
2270-2
 Practice Exam #2
October 26, 2001

     This exam is closed-book and closed-note.  You may not use a calculator which is capable of doing 
linear algebra computations.  In order to receive full or partial credit on any problem, you must show all 
of your work and justify your conclusions. There are 100 points possible, and the point values for each 
problem are indicated in the right-hand margin.  Good Luck!

Well, actually, for this practice exam there are more than 100 points.

1a)  Show that the following matrix equation has no solution
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(5 points)

I could write down the augmented matrix, row reduce, and show that I get an inconsistent equation 0=1. 
Or, for this simple system I can argue directly:  he last equation says x2=4, the second equation says 
x1=0, but then the first equation would say that 1(0)+2(4)=2, which is false.

1b)  Find the least-squares solution to the problem in part (a).
(10 points)

I solve the equation (A^T)Ax=(A^T)b:
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2)  Let W be the span of the vectors {[1,-1,0],[2,0,1]} in 3-space.
2a)  Find an orthonormal basis for the plane W.

(10 points)
Use Gram-Schmidt.  I’m in Maple, you would do this by hand.
> v1:=vector([1,-1,0]);



v2:=vector([2,0,1]);
w1:=1/sqrt(2)*v1;
   #first orthogonal element
z2:=v2-(dotprod(v2,w1))*w1;
   #second orthogonal element;
w2:=1/norm(z2,2)*z2;
   #second orthonormal element
[evalm(w1),evalm(w2)];#orthonormal basis,
   #I used brackets because maple disorders
   #sets, i.e. {x,y}={y,x]

 := v1 [ ], ,1 -1 0

 := v2 [ ], ,2 0 1

 := w1
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So, writing things vertically as we are used to doing, this would read
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2b)  Let v=[2,0,4].  Find the projection of v onto the subspace W, using your answer from (2 a)

(10 points)

> v:=vector([2,0,4]);
proj(v):=dotprod(v,w1)*w1+dotprod(v,w2)*w2;
evalm(proj(v));

 := v [ ], ,2 0 4

 := ( )proj v − +v1 2 v2

[ ], ,3 1 2
So the projection vector is [3,1,2]
2c)  If you did your computations correctly, your answer to part (2b)  should equal the matrix from 
number (1) multiplied by your least squares solution [x1,x2] to part (1b),
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Explain why.

(5 points)



Check:
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The reason for this is that the least squares solution to an inconsistent matrix system Ax=b IS the 
solution to Ax=proj(b) onto the image of A.  The image of A in #1 is the matrix A’s column space, which 
is the subspace W of #2.  Thus Ax gives the projection vector worked out in #2b

3a)   Define what a linear transformation L:V->W is.
( 5 points)

L is linear means that for all u,v in V and all scalars c
(A) L(u+v)=L(u)+L(v), and
(B) L(cu)=cL(u).

3b)  Define the kernel and image, for  a linear transformation L
(5 points)

kernel(L):={v in V such that L(v)=0}
image(L):={w in W such that w=L(v) for some v in V}

3c)  Prove that the kernel of a linear transformation is a subspace.
(5 points)

We need to verify that kernel(L) is closed under addition and scalar multiplication:
(A)  Closure under addition:  Let u and v be in ker(L).  This means L(u)=0, L(v)=0.  Therefore, 
L(u+v)=L(u)+L(v)=0, so u+v is also in the kernel of L.
(B) Closure under scalar multiplication:  Let u be in ker(L).  Then L(cu)=cL(u)=c0=0, so cu is in ker(L).

4)  Let P2 be the space of polynomials in "t" of degree at most 2.  Define T:P2->P2 by
     
     T(f) = f’’ + 4f
4a)  Find the matrix for T, with respect to the standard basis {1,t,t^2}.

(5 points)
Write B for the matrix of T with respect to our basis.  The jth column of B is the coordinate vector for T 
of the jth basis element.  So we compute:
T(1)=4  .... coord vector is [4,0,0]
T(t)=4t  .....coord vector is [0,4,0]
T(t^2)=2+4t^2  ....coord vector is [2,0,4].
Thus

 := B
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4b)  Find bases for image(T) and Kernel(T).
(10 points)

Since the matrix of T has the property that when we multiply it by the coordinates of a vector v, we get 
back the coordinates of T(v), we work with B:  
     For ker(T) we want to know what input coords give output coords equal to zero.  Since B row reduces
to the identity, the only such input coords are c1=c2=c3=0.  Thus ker(T)={0}.  The zero-dimensional 
subspace has empty basis.  
     For image(T) we want to know what output coords be can get, i.e. we want all possible Bc.  Since B 
row reduces to the identity, we can solve Bc=b for c, given any b.  Thus image(T) is all of P2.  So we 
may take our P2 basis {1,t,t^2} as a basis for image(T).

4c)  verify the rank+nullity theorem for T
(5 points)

rank + nullity = domain dimension.
3+0=3

 
5)  Let
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 be a linear (matrix)  map from R^2 to R^2.  Let B={[1,1],[-1,1]} be a non-standard basis for R^2. Find 
the matrix for L with respect to the basis B.  

(20 points)
Method 1:
Write v1=[1,1], v2=[-1,1].  The columns of the matrix are the B-coords of L(v1), and L(v2).  
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Since the B-coords of [4,4] are [4,0], and the B-coords of [2,-2] are [0,-2], the matrix of L with respect 
to our non-standard basis is 
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Method 2:
Use transition matrices.  If we call the matrix with respect to the nonstandard matrix B, then the 
transition matrix which converts B-coords to E-coords, S=PE<-B, just has the E-coords of the B basis in 
its columns, i.e.
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The matrix with respect to the standard basis, A, was given in the problem:
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The relation between A and B is (check!) B=inverse(S)*A*S:
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6)  Find the least squares line fit for the following collection of 4 points:  {[0,0],[1,2],[-1,-1],[-2,-3]}.

(10 points)
We seek the best approximate solution to 
> m*matrix(4,1,[0,1,-1,-2])+b*matrix(4,1,[1,1,1,1])=matrix(4,1,[0,2,
-1,-3]);
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This is the matrix equation
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The least squares solution solves
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So the least squares line fit is y=1.6x + 0.3
7)  Find the orthogonal complement in R^4 to the span of 
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(10 points)
We want vectors perpendicular to the basis of V given above.  This is exactly the kernel of  
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Backsolving for the homogeneous equation we see x4=s, x3=t, x2=(1/2)t, x1=t-s, in vector form
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So a basis for the orthogonal complement is given by
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7)  True-False:  4 points for each problem; two points for the answer and two points for the reason.
7a)  Any collection of 3 polynomials of degree at most 2 must be linearly dependent.
     FALSE:  P2 is 3 dimensional, so has lots of bases consisting of 3 vectors
7b)  If the columns of a square matrix are orthonormal then so are the rows.
     TRUE:  We discovered this magic in our discussion of orthogonal matrices ... if A has orthonormal 
columns, then transpose(A)*A=I, from which it follows that A*(transpose(A))=I, which says that the 
rows of a are orthonormal.
7c)  The formula

=[ ]AB T AT BT

holds for all square matrices
     FALSE:  

=[ ]AB T BT AT

7d)  If x and y are any two vectors in R^n, then  ||x+y||^2 = ||x||^2 + ||y||^2.
     FALSE:  Using the dot product you see that ||x+y||^2 = ||x||^2 + ||y||^2 + 2*dotprod(x,y).  You only 
get the Pythagorean Theorem when x and y are orthogonal.
7e)  If V is a 3-dimensional subspace of R^6, then the orthogonal complement to V is also 
3-dimensional.
     TRUE:  In general the dimension of V plus the dimension of its orthogonal complement add up to the 
dimension of the Euclidean space.  This is because if you take a basis for V and augment it with a basis 
for V perp, it is "easy" to show you have a basis for R^n. 
7f)  If A is symmetric and B is symmetric, then so is A+B
     TRUE:  if aij=aji and bij=bji then aij+bij=aji+bji
7g)  The functions f(t)=t^2 and g(t)=t^3 are orthogonal, with respect to the inner product
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     TRUE.  If you compute [f,g] you get
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7h)  If a collection of vectors is dependent, then any one of the vectors in the collection may be deleted 
without shrinking the span of the collection.
     FALSE:  You may only delete a vector which is dependent on the remaining ones.


