MATH 2270-2

Additional homework to be handed in Friday October 26:
section 5.4 page 223, \#22, 23; (matrix least squares)
and the following "fundamental subspaces" problem:
[> restart:with(plots):with(linalg):
Problem I: Let $\mathrm{L}(\mathrm{x})=\mathrm{Ax}$, for the matrix A defined by
> A: =matrix $\left(\left[\begin{array}{l}1,0,-1,2,3] \text {, }\end{array}\right.\right.$
$[3,2,-2,1,-1]$,
$[1,2,0,-3,-7]$,
$[0,-2,-1,5,10]])$;

$$
A:=\left[\begin{array}{ccccc}
1 & 0 & -1 & 2 & 3 \\
3 & 2 & -2 & 1 & -1 \\
1 & 2 & 0 & -3 & -7 \\
0 & -2 & -1 & 5 & 10
\end{array}\right]
$$

Ia) Find bases for the four fundamental subspaces associated to this map (and matrix). In the domain space you will be looking for the kernel of A and the row space of A. In the codomain you want the image of A (= column space), and the kernel of the transpose of A. You should be able to deduce all of your answers from

```
> rref(A);
rref(transpose(A));
```

$\left[\begin{array}{ccccc}1 & 0 & -1 & 2 & 3 \\ 0 & 1 & \frac{1}{2} & \frac{-5}{2} & -5 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0\end{array}\right]$
$\left[\begin{array}{cccc}1 & 0 & -2 & 3 \\ 0 & 1 & 1 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$

1b) Verify that the two domain spaces are perpendicular to each other, and that the two codomain spaces also are, by checking orthogonality between the bases you found in part (a).

