MATH 2270-2

Additional homework to be handed in Friday October 26:

section 5.4 page 223, **#22, 23;** (matrix least squares) and the following "fundamental subspaces" problem:

Ia) Find bases for the four fundamental subspaces associated to this map (and matrix). In the domain space you will be looking for the kernel of A and the row space of A. In the codomain you want the image of A (= column space), and the kernel of the transpose of A. You should be able to deduce all of your answers from

> rref(A);

rref(transpose(A));

Γ	1	0	-1	2		3
	0	1	$\frac{1}{2}$	$\frac{-5}{2}$		-5
	0	0	0	0		0
	0	0	0	0		0_
		1	0	-2	3	
		0	1	1	-1	
		0	0	0	0	
		0	0	0	0	
		0	0	0	0	

1b) Verify that the two domain spaces are perpendicular to each other, and that the two codomain spaces also are, by checking orthogonality between the bases you found in part (a).