Math 2250-004
Week 9: March 5-9 5.1-5.3 linear differential equations of arbitrary order.

Mon March 5:
5.1 Second order linear differential equations, and vector space theory connections.

apter 5 we ltbe using vector space theory to understand solutions to differential equations!
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The two main goals in Chapter 5 are

(1) Jto learn the structure of solution sets to n™ order linear DE's, including how to solve the
corresponding initial value problems with 7 initial values:

) +a _ 1y(n_ Dy ‘ay +tay=f
(%) =
V' (%) =b,

and
to learn important physics/engineering applications of these general techniques. The applications we
learn about in this course will be for second order linear differential equations (n = 2), as below.

Applications Example (sections 5.4 and 5.6): The forced-damped-oscillator differential equation. Here
x(t)|is the function, instead of] i( X )l as often happens in our textbook when we move between theory and
applications. This particular differential equation arises in a multitude of contexts besides just the mass-
spring model, as we shall see.

x0) & v(9) be bre
mx'' +cx'+kx=F(t) rg(.ﬂ.as.‘uj-l%x masy

(U) =x
)):’(0) =vo‘g whe SWQ%

or

—_—

./‘:lci \ o~ - I:l
\]—W\/\/\r'\-«/\/\/\.& I X H:)

= 1 r « 1 { .
x(t) as P latmint Dowm 2qus W Dnuwn

gc‘M Whbnuns \0(5»‘}‘\0’\

u L J/\wo\/\

/ posst b

f Wm j\AM—T\U‘f\
, [
x7t) = Mjr IPNTY:

= -ex’ -
’f

Ngw fon's 2% Lo

|
L ingon dms P*OYOV"PM
(

to vel(ou)ra ,\
\
l
bova From LRSS o=
or s*‘rt{-du o ;P./\nrﬁ

re\mkw b ﬂqurnvww X=0



Start with second order linear differential equations - we'll see that differential equations with (higher)
order n follow the same conceptual outline.

Definition: A general second order linear differential equation for a function y(x) is a differential
equation that can be written in the form

A(x)y"" + B(x)y" + C(x)y=F(x) . e
We search for solution functions y(x)defined on some specified interval / of the forma < x < b, or

(a, ), (-, a) or (usually) the entire real line (- %, ). In this chapter we assume the function 4 (x)
# 0 on /, and divide by it in order to rewrite the differential equation in the standard form

Yy Epx)y' tax)y=[£(x). o

analogous to first order linear differential equations in Chapters 1-2:
y'tpx)y=q(x).

Exercise 1) Find all solutions to to second order differential equation for y(x)
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Theorem 1 (Existence-Uniqueness Theorem): Letp(x), g(x), f(x) be specified continuous functions on
the interval /, and letx, € /. Then there is a unique solution y(x) to the initial value problem

Yt p()y +q(x)y=r£(x)
V(%) = b
V(%)= b,
and y(x) exists and is twice continuously differentiable on the entire interval / .

Example For the forced mass-spring model this would be saying that once you specify the initial
displacement and velocity of the mass, and given the values of m, ¢, k and the known forcing function, the
future motion of the mass is uniquely determined .... i.e. the experiment is repeatable with the same result.
This make intuitive sense.

Exercise 2) Verify Theorem 1 for the interval / = (- o, ) and the I[IVP
v+ 2y’= 0
y(0) = b,
y’(0) =b,
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The real reason that differential equations of the form

' Epx)y' +q(x)y=[(x)

are called /inear is that the "linear operator" L that operates on functions by the rule

Ly)=y"+py" +qx)y
satisfies the so-called linearity properties

CL\API.(,\ 2"({ .
(D L(y +3,)=L(7) +L(») AR+3) = A% A3

A ()= CA;(J

2)L(cy)=cL(y),c € R.

(Recall that the matrix multiplication function L (x) := A x satisfies the analogous properties. Any time we
have have a transformation L satisfying (1),(2), we say it is a linear transformation. )

Example: If
Ly) =y +2),
and

2 3 -2
P (x) =2, yy(x) =€ () =e T

L() = () ¢ 26 = 2 + 129 =2 4 Ux
L(y)(x)=2 +2-2,x . . -
Lee™) = @97+ 2@ = 9%+ 2(37) = (Se
L(yz)(x)=9e3x+2-3 e )
L(e-ix) - e—-'?.x)l/+ 2(6—1‘) - Lfc-lx 492 ('2&41‘) - O
L(y;)(x)=4e " +2:2e77=0.  (Weknew that!)

we can compute at x,

g

Ly +3)@)=(2+9¢7) +2(2x+3¢)
= L(yl)(x) + L(yz)(x) !

L (5y,)(x)=(10+2:10x) =5 L () (%).



Exercise 3a) Check the linearity properties (1),(2) for the general second order differential operator L and
general functions y, (x), v, (x). Compare to matrix multiplication properties. In other words show that the

operator L defined by
r;(y) =y p()y'tgx)y \

2-
satisfies the so-called linearity properties CLP+( 1 qula%'
AR+3) = Az P
A (Q',‘(’) = C A?

DL +3)=Ln) +L(r)
2)L(cy)=cL(y),c € R.
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= c.a” + r(x)c.j’ + 1[x)c7 = < l:n}"{-l)(x-]la/ -l-dll(.'&)‘g]

3b) Use these properties to show that what happened in Exercise 2b was no accident:

intoday

Theorem 2: the solution space to the homogeneous second order linear DE

L(j) =y +px)y +q(x)y=0

is a subspace. Notice that this is the analogous proof we used earlier to show that the solution space to a
homogeneous matrix equation is a subspace.
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Unlike in the previous example, and unlike what was true for the first order linear differential equation

Y +p(x)y=q(x)

there is not a clever integrating factor formula that will always work to find the general solution of the
second order linear differential equation

y'+px)y' +q(x)y=[f(x).

Rather, we will usually resort to vector space theory and algorithms based on clever guessing, as in the

following example:

nsider the homogeneous linear DE for y(x)

4a) Find two exponential functions y, (x) =¢"*,y, (x) = ¢"" that solve this DE.
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4b) Show that every IVP
y'-2y'-3y=0
[ uuz.sg(ay's WIBAIA D ¥(0) = b,
y'(0) =0,

can be solved with a unique linear combination y(x) = ¢,y, (x) + ¢y, (x) , (Where ¢, , ¢, depend on

1

X -
by s by)- ¢ e 4ge

Then use the uniqueness theorem to deduce that y, , v, span the solution space to this homogeneous

differential equation. Since these two functions are not constant multiples of each other, they are linearly
independent and a basis for the 2-dimensional solution space!




Some important facts about spanning sets, independence, bases and dimension follow from one key fact,
and then logic. We will want to use these facts going forward, in our study of differential equations.

—

key fact: If n vectors v v span a vector space J¥ then any collection w ... w,, of vectors in W

1 2 —27 b 1 2 —27
with N > n will always be linearly dependent. (This is explained on pages 254-255 of the text, and has to
to do with matrix facts that we already know.) Notice too that this fact fits our intuition based on what we

&mow in the special cases that we've studied, in particular W = R".)

(Thus:
1) If a finite collection of vectors in W is linearly independent, then no collection with fewer vectors can

span all of W . (This is because if the smaller collection did span, the larger collection wouldn't have been
linearly independent after all, by the key fact.)

2) Every basis of I has the same number of vectors, so the concept of dimension is well-defined and

doesn't depend on choice of basis. (This is because if v, v, ... » are a basis for }# then every larger

collection of vectors is dependent by the key fact and every smaller collection fails to span by (1), so only
collections with exactly n vectors have a chance to be bases.)

3) Let the dimension of W be the number 7, i.e. there is some basis Y, Y, .. ¥ for W. Then if vectors
w,w,,..w span I then they're automatically linearly independent and thus a basis. (If they were

dependent we could delete one of the w, that was a linear combination of the others and still have a

spanning set. This would violate (1) smce v .. v are linearly independent.)

15—2’ M

4) Let the dimension of 7 be the number #, i.e. there is some basis Y,V ¥ for W. Then if
w,w,, ..w arein ¥ and are linearly independent, they automatically span /" and thus are a basis. (If

they didn't span /' we could augment with a vectorw . |

still independent* vectors in W, violating the key fact.

@f wl, w,,..w are linearly independent, and wo. & span {ml, W, . W }, then

W, W, .. W W o are also linearly independent. This fact generalizes the ideas we used when we

figured out all p0551ble subspaces of R3. Here's how it goes:

not in their span and have a collection of n + 1

To show the larger collection is still linearly independent study the equation

clml—l—cw-l— -I—cw -l—a’wJrl 0.
Since w & span {—1 S Wy W, } it must be that d = 0 (smce otherwise we could solve for w , 41352
linear combination of W, W, ... _n). But once d =0, we have
B, + W, + ...+ cw = 0
which implies ¢, = ¢, =..=c¢_= 0 by the mdependence of w w

1,_2, ST



Tues March 6:
5.1-5.2 Second order and n™ order linear differential equations, and vector space theory connections.
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Theorem 3: The solution space to the second order homogeneous linear differential equation
yitpx)y tqx)y=0

is 2-dimensional on any interval / for which the hypotheses of the existence-uniqueness theorem hold.

proof:

Pick any x, € /. Find solutions y, (x), y, (x) to initial value problems at x, so that the so-called

Wronskian matrix for y,, y, atx, \I/ \]/

M1(%)  Y2(%)

W(ylayz)(xo) - yl’(xo) yzl(xo)

) ] () | | |
is invertible (i.e. are a basis for R? , or equivalently so that the determinant of

(%) | Y2 (%)
the Wronskian matrix (called just the Wronskian) is non-zero at x,, ).

* You may be able to find suitable y,, y, by a method like we used in the previous example, but the

existence-uniqueness theorem guarantees they exist even if you don't know how to find formulas for them.

Under these conditions, the solutions y,, y, are actually a basis for the solution space! Here's why:
—/— e

» span: the condition that the Wronskian matrix is invertible at X, means we can solve each IVP there with

a linear combination y = ¢y, + ¢,y, : In that case, to solve the [IVP

-

y'+px)y' +q(x)y=0
Y(%) = by
Y (%)= b

we set
y(x)=cp,(x) +cp,(x).
: "(x1= Ia ’
Atx, we wish to find ¢, ¢, so that h) =, 2 Y,

2
¢ (%) T a3 (%) = by
e (%) T ey (%) =h

This system is equivalent to the the matrix equation
Y1(%) (%) || & by
Y1 (%) %2 (%) || & b,

When the Wronskian matrix at x, has an inverse, the unique solution [cl , €, ]T is given by



-1
G Yi(%) ¥2(%) by

) Y1 (%) Y2 (%) b,
Since the uniqueness theorem says each IVP has a unique solution, we've found it!
Y(x) = e (x) + ey, (x).

Span: Since each solution y(x) to the differential equation solves some initial value problem at x, this
gives all solutions, as we let [bo, b, ]T vary freely in R2. So each solution y(x) is a linear combination of

Yy ¥, Thus {yl , yz} spans the solution space.

«  Linear independence: If we have the identity
ey (%) e, (x)=0 .
then by differentiating each side with respect to x we also have
ey (%) F ey, (x) =0. ¢
Evaluating at x = x,, this is the system
o (xo) + czyz(xo) =0
) ! (xo) + czyz’ (xo) =0

» Yi(%) (%) || @

_yll(xo) (%) || &

SO
. -1
G Yi(*%) ¥2(%)

cz_ Y1 (%) Y2 (%)
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are of the formy =y, +y, Wheré Vp 18 any single particular solutiop and y,, is

homogeneous DE. (y,, is called y , for complementary solution, in the text). Thus, if you can find a single

particular solution to the nonhomogeneous DE, and all solutions to the homogeneous DE, you've actually

found all solutions to the nonhomogeneous DE. (You had a homework problem related to this idea,

3.4.40, in homework 5, but in the context of matrix equations, a week or two ago. The same idea
reappears in your current lab, in the last problem.)

Theorem 4: All solutions to the nonhomogeneous second order linear DE
% LUy =y 0y +ay=r)

e

proof: Make use of the fact that
Ly)=y"+px)y +q(x)y

is a linear operator. In other words, use the linearity properties

DL +2y)=L(n) T L) ma_f Cat L(m’}::g

(e 4 L{y,)=0
D) L(cy)=cL(y),ceR.
) L(cy)=cL(y) Toom Lypryp) = Lly) +L0) (1)
=£+0
C@,\wulb,(l" 25’
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In Monday's notes we found that the general solution to the homogeneous differential equation

y'-2y'-3y=0
1S

— X 3x
yy=c e’ tcen.

Now consider the non-homogeneous differential equation

\_(‘))t y''=-2y'-3y=6. 'ﬁ?:/‘\

Notice that P, 0
? < L
Y= -2 Ligp= 0-0-3A =4
is one particular solution to the differential equation. A=-
e
Exercise 1a) Solve the initial value problem
y''=-2y'-3y=6.
y(0)=-1
»'(0)==5
with a solution to the differential equation of the form
y=ypty,=-2+ce’ —I—czesx. \75 Than4 H
/ ~X %7(
‘3 =0 +-qe +35qe¢
3(032 “2L+ ¢t G tg = |
la/[é\ _C\,‘_'}(_L "C‘ +%(.L—:_.S
_ - % v (I !
xa(x\\ 2+Re -le - 3 |-g
C 1 ]
ReIk 0 4 |-¢
1
1b) Notice that the same algebra shows you could solve every initial value problem (") | l .
y''-2y'-3y=6. -RERAR \ 0 |*
#(0) = R
y'(0) ¢ =2
with a solution of the form G =-|

yEypty,= 24 e 4’

so by the uniqueness theorem for initial value problems, these ARE all the solutions to the differential
equation even though we did not get them a direct method like we used for first order linear differential
equations.






The theory for n™ order linear differential equations is conceptually the same as for second order...

Definition: An n™ order linear differential equation for a function y(x) is a differential equation that can
be written in the form

A )" +4 (x)y to A (x)y A+ Ay (x)y=F(x) .

We search for solution functions y(x)defined on some specified interval / of the forma < x < b, or
(a, ©), (-9, a) or (usually) the entire real line (- 9,90 ). In this chapter we assume the function 4, (x)

(n—1)

# 0 on /, and divide by it in order to rewrite the differential equation in the standard form

(n—1)

y(")—i-an_ly +..tay tay=f.

(a, _ |».a.a
the interval 7 .)

o>/ are all functions of x, and the DE above means that equality holds for all value of x in

Theorem 1 (Existence-Uniqueness Theorem): Leta, _ | (x),a, _,(x),.. a,(x),a,(x), f(x) be
specified continuous functions on the interval 7, and letx, & /. Then there is a unique solution y(x) to
the initial value problem

and y(x) exists and is » times continuously differentiable on the entire interval 7 .



The differential equation

—1 ,
y(n) +an_1y(n )—i-... +a1y -I-aoy:f

is called linear because the operator L defined by
Ly)=y"+a, _ v
satisfies the so-called linearity properties

DLy +2) =L(n) +L(22)

(n_1)+...+a1y’—|—a0y

2)L(cy)=cL(y),c € R.

« The proof'that L satisfies the linearity proporties is just the same as it was for the case when n = 2,
which we checked.

The following two theorems only use the linearity properties of the operator L. I've kept the same
numbering we used for the case n = 2.

Theorem 2: The solution space to the homogeneous linear DE
) +an_1y(n_l) +..t+ay +a,y=0

is a subspace.

Theorem 4: The general solution to the nonhomogeneous n™ order linear DE
(n) (n—1) ' -
yta _ |y toota vy taygy=f
is y =y, +y,wherey,is any single particular solution and y,, is the general solution to the homogeneous

DE. (y,is called y , for complementary solution, in the text).



Theorem 3: The solution space to the n™ order homogeneous linear differential equation
(m=D 4 +ay +a,y=0

is n-dimensional. Thus, any » independent solutions y,, y,, ... y, will be a basis, and all homogeneous

y(”)+an_1y

solutions will be uniquely expressible as linear combinations
yp=cy, tey, + ..ty

proof: By the existence half of Theorem 1, we know that there are solutions for each possible initial value

problem for this (homogenenous case) of the IVP for n™ order linear DEs. So, pick solutions
Y, (x),¥,(x), ... ¥, (x) so that their vectors of initial values (which we'll call initial value vectors)

71 (%) ¥5(%) Y(%)
(%) Y, (%) Y, (%)
) L Ke) o v (%)

(%) y(”_l).(xo) (%)

are a basis for R” (i.e. these n vectors are linearly independent and span R” . (Well, you may not know
how to "pick" such solutions, but you know they exist because of the existence theorem.)

Claim: In this case, the solutions y,, y,, ... v, are a basis for the solution space. In particular, every

solution to the homogeneous DE is a unique linear combination of these » functions and the dimension of
the solution space is # .... discussion on next page.



*  Check thaty,, y,, ...y, span the solution space: Consider any solution y(x) to the DE. We can
compute its vector of initial values

¥(*) b,
y,(xo) b,
) =] b
y("_”.(xo) b,_, |

Now consider a linear combinationz =c¢,y, + ¢, y, +... + ¢ y . Compute its initial value vector, and
notice that you can write it as the product of the Wronskian matrix at x,, times the vector of linear

combination coefficients:

Z(xo) yl(xO) yz(xo) yn(XO) ‘
z (x0> _ Y1 (x0> yzr(XO) y/n(xo) ©
Z(n—l)(xo) yin—l)(xo) yénfl)(xo) y£n7]]<x0) <,

We've chosen the y,, y,, ... y, so that the Wronskian matrix at x,, has an inverse, so the matrix equation

ygn—l)(xo) yén_l)(x0> y’gn—l)(xo) ¢ bn—l

has a unique solution ¢ . For this choice of linear combination coefficients, the solution
¢y, T ¢, + ... + ¢y has the same initial value vector at x, as the solution y(x) . By the uniqueness

half of the existence-uniqueness theorem, we conclude that
y(x)=z(x)=cy, tey, +..tcy .
Thus y,,y,, ... v, span the solution space.

+ linear independence: If a linear combination ¢y, + ¢,y, + ... + ¢y = 0, then differentiate this
n

identity n — 1 times, and then substitute x = x, into the resulting n equations. This yields the Wronskian
matrix equation above, with [bo, bl,... bn 1 ]TZ [0,0,..., O]T. So the matrix equation above implies that

[cl, Cy oC, ]T= 0. Soy,y,, ...y, are also linearly independent.

 Thus y,,»,, ...y, areabasis for the solution space and the general solution to the homogeneous DE

can be written as
Yy=coy, + C, Yy + ...+ cy, -



Let's do some new exercises that tie these ideas together. (We may do these exercises while or before we
wade through the general discussions on the previous pages!)

Exercise 2) Consider the 3™ order linear homogeneous DE for y(x):

/ll+3y//_yl 3y O
Find a basis for the 3-dimension ‘llsolutlon space, and the general solution. Use the Wronskian matrix (or
determinant) to verify you have a basis. Hint: try exponential functions.

+_T4 3: e L(B)— P A3l v T =3 = O
\A/—_re_” =erx(/r43r e 7)]
" o_ X
3//1— kL'Se rX = Qrﬁi \'k(r*z) -—('\"l-ﬂ]
j -
dstat ”
X KQ—-\-?,) (r’»—D_) =
(r*%)(v--—-\)(r*l) =

\(::()-\)"3
X & &% o selhy

< -X “zﬂ
So 3‘.‘Q|€ rGe +(¢ o~

seldns



Exercise 3a) Find the general solution to
y,l/+3y”_y,_3y:6'
Hint: First try to find a particular solution ... try a constant function.

3b) Set up the linear system to solve the initial value problem for this DE, with
»(0)=-1,y"(0)=2,y""(0) =7. Does the form agree with the actual solution?
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5.3 Solving constant coefficient homogeneous linear differential equations

Announcements: ° TM'% 'l"Do\aj_
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For the next two sections we focus homogneous linear differential equations with constant coefficients.
Section 5.3 contains the algorithms we'll need and in section 5.4 we'll apply the general theory to the
unforced mass-spring differential equation.

5.3: Algorithms for the basis and general (homogeneous) solution to

Ly)=y"4a W V++ay+a,y=0 .

when the coefficients @, _ ,a_ _ ,, ... a, a, are all constant.

— —_— —_— —

tep 1) Try to find a basis for the soluti de of tial functions.... =¢ " . Inthi
ste ry to find a basis for the solution space made of exponential functions....try y(x) = e n this

case n-domd ‘3’ = re™®
" v
v
_1 I
L(y)= e”(rn +a "+ tar+t ao) = p(r). 3‘3’ = e"*

A
We call this polynomial p () the characteristic polynomial for the differential equation, and can read off
what it is directly from the expression for L (y) if we want. For each root 7 of p(r), we get a solution

rx
e’ to the homogeneous DE.

Case 1) If p(r) has n distinct (i.e. different) real roots TS SYRINY then
rlx sz rx
e ,e”,..,e"
is a basis for the solution space; i.e. the general solution is given by

rlx r2x rXx
yy(x)=ce +ce” +..+tce"
Example: The differential equation
y///+3y//_yr_3y:0
has characteristic polynomial
p(r)=r +37 —r=3=0+3)(F=1)=(F+3)(r+1)(r—1)
so the general solution to \
y///+3y//_y/_3y:0 r‘:-'s)—\)\
° .Sre*kg QX, e~x e”’;K

_ X -X -3x ’
yy(x)=ce tce” +ce .

u\ -\-DW, ua,.y\,\ vl 4 '~ <_l,\o.c(cz4 Hat %_Q’(,C )
’K"’“ gre,{-\,\ spew, nnHa L/\.)V‘WSL‘AAV\.,

A § * 3y 3y 0

%K] e a 543-\5

(x)':C‘C*‘\'C,_e—%'* G ¢ \a(o) be

"N =¢ e + ¢ (-2 *‘3('7’:”‘) ,fﬂﬁ &{:{o\
n X - % &+ C Lqe—'7>") ( ’) V -
O RTRE AN

X % JOK
e e e < ) |

Il =5 cex 38| VP J,

Y e* -¢ o — Y o |~ t - ’3 IP|

j|l e,( e‘ X ole C7a ”(D] ‘ | 1 L‘b



X r.Xx

Exercise 1) By construction, ¢ el .., ¢ all solve the differential equation. Show that they're
linearly independent. This will be enough to verify that they're a basis for the solution space, since we
know the solution space is n-dimensional. Hint: The easiest way to show this is to list your roots so that
r, <r, <..<r andto usea limiting argument.

l:LH—&« wtT +0 SL\M bc&;\‘s 6 \'*F " Qu\; oang. |'MLQ.(~ [N hndxml
3 SFacq, o H*«a’\re_ o

P ~X BRA .
e +ge +qe = xelR bass
-1x - 9%
= LXK - A
. € C + Qe +ge =0 ¢
lim * ¢ +O +0 =0 S ;= 0.
A DO
-% ~3x
c, e +C.Se = 0
“‘Q-.X . -1x
L\mhﬂ-‘ -'mac’(\ . e, + ;Q = O
[vna .+ 00 Sv =0
A0
~Yx o _
ce =0 =) &= 0



Case2) Repeated real roots. In this case p(r) has all real roots |, r,, ... v (m < n) with the r; all

different, but some of the factors (r — rj) in p(r) appear with powers bigger than 1 . In other words,

p(r) factors as
k k k

p(r)= (r—rl) l(r—rz) 2...(r—rm) "
Withsomeofthekj > l,andk1 —I—k2 +..+ km=n.

Start with a small example: The case of a second order DE for which the characteristic polynomial has a
double root.

Exercise 2) Letr, be any real number. Consider the homogeneous DE
rr !/ 2 j—
Ly)=y"-2ry +riy=0.

r.Xx r.Xx
with p(r) = ) ror+ r? = (r—r1 )2 , 1.e. 7, is a double root for p(r). Show that e ",xe' area
basis for the solution space to L (y) = 0, so the general homogeneous solution is

roXx rox

r.Xx
yy(x)=ce' +c xe' . Startby checking thatx e ' actually (magically?) solves the DE.
(We may wish to study a special case y’'+ 6y’ +9y=0.)

"2 6wt =0 o~ chaclied o lila
] 3" A jHM‘s i yoan H(/\)!



Here's the general algorithm: If

kl k2 km
p(r)=(r—r1) (r—rz) ...(r—rm)
rXo X roXx . . .
then (as before)e " , e~ , ..., e ™ areindependent solutions, but since m < n there aren't enough of them
to be a basis. Here's how you get the rest: For each k] > 1, you actually get independent solutions
r.x r.x r.x k—1rx
e’/ ,xe’ ,xe’ ,..,x’ e’ .

This yields kj solutions for each root 7; 580 since k| + k, +...+ k = nyou geta total of n solutions to

the differential equation. There's a good explanation in the text as to why these additional functions
actually do solve the differential equation, see pages 316-318 and the discussion of "polynomial
differential operators". I've also made a homework problem in which you can explore these ideas. Using
the limiting method we discussed earlier, it's not too hard to show that all # of these solutions are indeed
linearly independent, so they are in fact a basis for the solution space to L(y) =0 .

Exercise 3) Explicitly antidifferentiate to show that the solution space to the differential equation for y(x)
4 3
y( ) _ y( ) =0
agrees with what you would get using the repeated roots algorithm in Case 2 above. Hint: first find

rr

v=y""", using v' -v =0, then antidifferentiate three times to find y,. When you compare to the repeated

roots algorithm, note that it includes the possibility » = 0 and that fr=1,
()] QY

L('ﬂ’ «3 3 - 0O ) (4 K)L's) Chaphn 4
X\ _ - _ C ~
qrem™ w0 Ll = () ot v= " Han DE say
_ 4 rx 3er>k ,
= ¢ e vg ot Vev=0
e (o) = O e *(v'-v)= 0O
RN L&) =0
¢ (.r-l) Fry = (‘/k
(\’-o)”(h_l')—_ O v=Ce
basie 51) Salmjn'ms; ) In_ Ce-,g
‘(e(/\‘! . e,x \ l X., X . II: Ce’x.(.D
O S 3= e ~
=\ ox )’-EO)( 2 0% - C,Q, N D;{ y €
e x €

e L LX)
Case 3) Complex number roots - this will be our surprising and fun topic on Friday. Our analysis will

explain exactly how and why trig functions and mixed exponential-trig-polynomial functions show up as

solutions for some of the homogeneous DE's you worked with in your homework and lab for this past

week. This analysis depends on Euler's formula, one of the most beautiful and useful formulas in

mathematics:

¢ ®=cos(6) + isin(0)
2 _
fori” =-1.
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5.3 Solving constant coefficient homogeneous linear differential equations: complex roots in the
characteristic polynomial
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5.3 continued. How to find the solution space for ﬂth order linear homogeneous DE's with constant
coefficients, and why the algorithms work. et

/
L(w) = Q) ’l'o\»\-—\‘% Ao +0\‘a—\-6\,p3 = D
Strategy: In all cases we ﬁr‘sac try to find a basis for the n - dimensional solution space made of or related to

exponential functions....trying y(x) = €~ yields
-1

L(y)=erx<rn—l—an T4 +a1r+a0)=erxp(r).

The characteristic polynomial p(7) and how it factors are the keys to finding the solution space to
L (y) =0. There are three cases, of which the first two (distinct and repeated real roots) are in yesterday's
notes.

Case 3 !l p(7) has complex number roots.\ This is the hardest, but also most interesting case.The punch

line is that exponential functions ¢ still work, except that » = a & b i ; but, rather than use those complex
exponential functions to construct solution space bases we decompose them into real-valued solutions that
are products of exponential and trigonometric functions.

F\Av\d«\\ivd_ ™ \alo \ ‘& = O\t\)a: e W[)Ll-,g WU%

ax ax
How = e wshbx, € sinbx o~

veall selhns.
Mo ¢ \;\/\e\mjf dwo ‘H\'ISR hase dv &D
_L o (A*b;\x e}k"’bﬁ\ﬂ
e

)



To understand how this all comes about, we need to learn Euler's formula . This also lets us review some
important Taylor's series facts from Calc 2. As it turns out, complex number arithmetic and complex
exponential functions actually are important in many engineering and science applications.

Recall the Taylor-Maclaurin formula from Calculus

F) ~F(0) + 1 (O + 5 (008 + 50f (O oot — 7 (O 4.

3!

(Recall that the partial sum polynomial through order » matches fand its first n derivatives atx, = 0.

When you studied Taylor series in Calculus you sometimes expanded about points other than x, = 0. You

also needed error estimates to figure out on which intervals the Taylor polynomials actually coverged back
tof.)
Lo - p
Exercise 1) Use the formula above to recall the three very important Taylor series for
Lo 1A QL all x

la) €= l&ix&.?ﬁfW— :j()(’s+--- +:§>‘*-~-
A f@O= 1 fa= @, L
"
Fla=e §rlxr=e*, Faze’, .
1b) cos(x) = | _z—‘Tx"' +,_-t‘-‘.>(“-(ﬁx(’+...
n =
£y = | , ftn = 0 ' F' 0 = - § (0) = O {(“\)(0)—- I, "zl‘l"\l'\
-S:(,(_')':,,os,g }/(x): —Sl“/\x, 'f”(;g_'): "‘457(, {l’l(;g:): Sl'\m)(, ‘f (,X\: UUS)(, V'QF-LA"‘\
) 5
,{:(o]t 0 ')U(o)’-'-\ ')c"(o\ = 0 5"'((,\’: -1 { (o)T‘O , Y‘Q'uq"

" m [Un - . a
f (1 287mr F'(x) = wosx , f (x1= ~SinR, F (x) = avosn, 'f' (%) = SR, "‘(‘UA&’\—
In Calculus you checked that these series actually converge and equal the given functions, for all real
numbers x.

Exercise 2) Letx =i 0 and use the Taylor series for ¢' as the definition of ¢ %in order to derive Euler's

formula: 1= ﬁ 1= -
¢'®=cos(0) +isin(0) . . . RN

y RS . . ==
X =10 e - rio s LGo) 4 1 (i6) rhle v =

kS g S 1 ¢ f s L

Slave - 50 50"+ g0+ LE -6

S SR W R

3
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From Euler's formula it makes sense to define

TP = P = ¢ (cos(b) + isin(b))

fora, b € R. So forx € R we also get
e(a + bi)x

=¢&""(cos(bx) +isin(bx))=e""cos(bx) +ie“sin(bx).

For a complex function f(x) + i g(x) we define the derivative by
D (f(x) +ig(x)) =/ (x) +ig'(x).

It's straightforward to verify (but would take some time to check all of them) that the usual differentiation
rules, i.e. sum rule, product rule, quotient rule, constant multiple rule, all hold for derivatives of complex
functions. The following rule pertains most specifically to our discussion and we should check it:

D e~ w

Exercise 3) Check that Dx(e(a FOONY = (g 4+ bi) TP e » =fre

D erx:rerx

2 3 3
even if 7 is complex. (So alsoD r=Dret=r D & =r ", etc)

Dx( (O‘*b‘)x) D ( (bos\ox 4—(5(»&7&\) Eule .
D (6’. WSLK’) t+ D (C Sw\bx.)

(,,e_ sinbr + 2l Twoshx

T g “ginbx & b wsLx

@thi)x
= (arbi) e

1

X (Ag(k'm() & 'aeqxbosbi_x



Now return to our differential equation questions, with

-1 ,
L(y) ==y(”)+an_1y(" )+...+a1y ta,y.

Then even for complex r=a + bi (a,b € R), our work above shows that

L&) =™ (r" +a,_ " 4t arta)) = p(r).

Soif 7 =a + b iis a complex root of p(r) then ¢ * is a complex-valued function solution to L (y) = 0.
But L is linear, and because of how we take derivatives of complex functions, we can compute in this case
athi)
that O+O L( rx) L( a x (b )+ ax_ - (b )) e& K:e_q*ws,ox
o 1=L\e =Lle "cos(ox 1e "sm(ox
rre?sid x

=L(e"“cos(bx)) +iL(e" sin(bx)) .

Equating the real and imaginary parts in the first expression to those in the final expression (because that's
what it means for complex numbers to be equal) we deduce

0=L(e" "cos(bx))
0=L(e "sin(bx)) .

Upshot: If »=a + b i is a complex root of the characteristic polynomial p () then
y, =¢""cos (b x)
y, =€ "sin(b x)
are two solutions to L (y) = 0. (The conjugate roota — b i would giverise to y,, -y, , which have the
same span. 1T
2.5 e s (cby) = & toshy

2,7 A sin(~bx) = - € sinby

Ws,'h : a[v..‘qva W~LG U (
st\‘rLL Lopk sl B athe don } ‘ANWA b a by



Case 3) Let L have characteristic polynomial

p(ry=r"+a rn_l+...+a1r+a0

-1
with real constant coefficients a, _ ..., a,, a, . If (r — (a + b i) )k is a factor of p(r) then so is the
conjugate factor (r — (a — b i) )k . Associated to these two factors are 2 £ real and independent solutions
to L (y) =0, namely
¢"“cos (b x), ¢ 'sin(b x)
x €' "cos (b x), x e “sin(b x)

k—1 ax k—1

X e cos(bx),x eaxsin(bx)

Combining cases 1,2,3, yields a complete algorithm for finding the general solution to L (y) = 0, as long as

you are able to figure out the factorization of the characteristic polynomial p (7) .

Exercise 4) Find a basis for the solution space of functions y(x) that solve
y''+9y=0.
(You were told a basis in the last problem of last week's lab....now you know where it came from.)

Pl=v*49q =0  r=-9

r= ’.':'g,_'
F2oth =athbo %:O
6% =3
3\:30\»&0,31“ e tosdx T ersdx
ox _,; :
Yo r € Staby €1 sinix = StWdK

Exercise 5) Find a basis for the solution space of functions y(x) that solve
y'+6y +13y=0.

Exercise 6) Suppose a 7™ order linear homogeneous DE has characteristic polynomial

2
p(r)= (rz+6r+ 13) (r—2)3.
What is the general solution to the corresponding homogeneous DE?



