
Math 2250-004      
Week 9:  March 5-9  5.1-5.3   linear differential equations of arbitrary order.               

Mon March 5:  
5.1  Second order linear differential equations, and vector space theory connections.

In Chapter 5 we'll be using vector space theory to understand solutions to differential equations!

Announcements: 

Warm-up Exercise:

 



The two main goals in Chapter 5 are 
(1)  to learn the structure of solution sets to nth order linear DE's, including how to solve the 
corresponding initial value problems with n initial values:

y n an 1y n 1 ... a1 y a0 y = f 
y x0 = b0 
y x0 = b1 
y x0 = b2 

:  
y n 1 x0 = bn 1 

and 
(2)  to learn important physics/engineering applications of these general techniques.  The applications we 
learn about in this course will be for second order linear differential equations (n = 2), as below.

Applications Example  (sections 5.4 and 5.6):  The forced-damped-oscillator differential equation.  Here 
x t  is the function, instead of y x , as often happens in our textbook when we move between theory and 
applications.  This particular differential equation arises in a multitude of contexts besides just the mass-
spring model, as we shall see.

m x c x k x = F t  .
x 0 = x0 
x 0 = v0



Start with second order linear differential equations - we'll see that differential equations with (higher) 
order n follow the same conceptual outline.

Definition:  A general second order linear differential equation for a function y x  is a differential  
equation that can be written in the form

A x y B x y  C x y = F x  .

We search for solution functions y x defined on some specified interval I of the form a x b, or 
a, , , a  or (usually) the entire real line , .  In this chapter we assume the function A x

0 on I, and divide by it in order to rewrite the differential equation in the standard form

y p x y q x y = f x  .   

analogous to first order linear differential equations in Chapters 1-2: 
  y p x y = q x .

Exercise 1)  Find all solutions to to second order differential equation for y x  

y 2 y = 0 

on the x interval x .  



Theorem 1 (Existence-Uniqueness Theorem):  Let p x , q x , f x  be specified continuous functions on 
the interval I , and let x0 I .  Then there is a unique solution y x  to the initial value problem

y p x y q x y = f x
y x0 = b0 
y x0 = b1 

and y x  exists and is twice continuously differentiable on the entire interval I .

Example  For the forced mass-spring model this would be saying that once you specify the initial 
displacement and velocity of the mass,  and given the values of m, c, k and the known forcing function, the
future motion of the mass is uniquely determined  .... i.e. the experiment is repeatable with the same result. 
This make intuitive sense.

Exercise 2)  Verify Theorem 1 for the interval I = ,  and the IVP
y 2 y = 0  

y 0 = b0 
y 0 = b1 



The real reason that differential equations of the form

y p x y q x y = f x

are called linear is that the "linear operator" L that operates on functions by the rule

L y y p x y q x y 
satisfies the so-called linearity properties

     (1) L y1 y2 = L y1 L y2  

     (2) L c y = c L y , c  .

(Recall that the matrix multiplication function L x A x satisfies the analogous properties. Any time we
have have a transformation L satisfying (1),(2), we say it is a linear transformation. )

Example:  If 

 L y y 2 y , 

and

 y1 x = x2,  y2 x = e3 x,  y3 x = e 2 x

we can compute at x,

L y1 x = 2 2 2 x = 2 4 x

L y2 x = 9 e3 x 2 3 e3 x = 15 e3 x 

L y3 x = 4 e 2 x 2 2 e 2 x = 0.        (We knew that!)

L y1 y2 x = 2 9 e3 x 2 2 x 3 e3 x  
=  L y1 x     L y2 x   !

L 5 y1 x = 10 2 10 x = 5 L y1 x .



Exercise 3a)  Check the linearity properties (1),(2) for the general second order differential operator L and 
general functions y1 x , y2 x .  Compare to matrix multiplication properties.  In other words show that the
operator L defined by

L y y p x y q x y 

satisfies the so-called linearity properties

     (1) L y1 y2 = L y1 L y2  

     (2) L c y = c L y , c  .

3b)  Use these properties to show that what happened in Exercise 2b was no accident:

Theorem 2:   the solution space to the homogeneous second order linear DE

y p x y q x y = 0 

is a subspace.  Notice that this is the analogous proof we used earlier to show that the solution space to a 
homogeneous matrix equation is a subspace.



Unlike in the previous example, and unlike what was true for the first order linear differential equation

y p x y = q x  

there is not a clever integrating factor formula that will always work to find the general solution of the 
second order linear differential equation

y p x y q x y = f x .  

Rather, we will usually resort to vector space theory and algorithms based on clever guessing, as in the 
following example:

Exercise 4)  Consider the homogeneous linear DE for y x  
y 2 y 3 y = 0 

4a)  Find two exponential functions y1 x = er x , y2 x = e  x that solve this DE. 



4b)  Show that every IVP
y 2 y 3 y = 0 

y 0 = b0 
y 0 = b1 

can be solved with a unique linear combination y x = c1y1 x c2y2 x  , (where c1 , c2 depend on 
b0 , b1 ).

Then use the uniqueness theorem to deduce that y1, y2 span the solution space to this homogeneous 
differential equation.  Since these two functions are not constant multiples of each other, they are linearly 
independent and a basis for the 2-dimensional solution space!



Some important facts about spanning sets, independence, bases and dimension follow from one key fact, 
and then logic.  We will want to use these facts going forward, in our study of differential equations.

key fact:  If n vectors v1, v2, ... vn span a vector space W then any collection w1, w2, ... wN of vectors in W  
with N n will always be linearly dependent.  (This is explained on pages 254-255 of the text, and has to 
to do with matrix facts that we already know.)  Notice too that this fact fits our intuition based on what we 
know in the special cases that we've studied, in particular W = n.)

Thus:
1)  If a finite collection of vectors in W is linearly independent, then no collection with fewer vectors can 
span all of W .  (This is because if the smaller collection did span, the larger collection wouldn't have been 
linearly independent after all, by the key fact.)

2)  Every basis of W has the same number of vectors, so the concept of dimension is well-defined and 
doesn't depend on choice of basis.  (This is because if v1, v2, ... vn are a basis for W then every larger 
collection of vectors is dependent by the key fact and every smaller collection fails to span by (1), so only 
collections with exactly n vectors have a chance to be bases.)

3)  Let the dimension of W be the number n, i.e. there is some basis  v1, v2, ... vn for W.  Then if vectors 
w1, w2, ... wn span W then they're automatically linearly independent and thus a basis.  (If they were 
dependent we could delete one of the wj that was a linear combination of the others and still have a 
spanning set.  This would violate (1) since v1, v2, ... vn are linearly independent.)

4)  Let the dimension of W be the number n, i.e. there is some basis  v1, v2, ... vn for W.  Then if 
w1, w2, ... wn are in W and are linearly independent, they automatically span W and thus are a basis.  (If 
they didn't span W we could augment with a vector wn 1 not in their span and have a collection of n 1 
still independent* vectors in W, violating the key fact.

*  Check: If w1, w2, ... wn are linearly independent, and wn 1 span w1, w2, ... wn , then 
w1, w2, ... wn, wn 1 are also linearly independent. This fact generalizes the ideas we used when we 
figured out all possible subspaces of 3.  Here's how it goes:   

To show the larger collection is still linearly independent study the equation
c1w1 c2w2  ... cnwn d wn 1 = 0 .

Since w span w1, w2, ... wn  it must be that d = 0 (since otherwise we could solve for wn 1 as a 
linear combination of  w1, w2, ... wn).  But once d = 0 , we have

c1w1 c2w2  ... cnwn = 0
which implies c1 = c2 =...= cn = 0 by the independence of w1, w2, ... wn .



Tues March 6:  
5.1-5.2  Second order and nth order linear differential equations, and vector space theory connections.

Announcements: 

Warm-up Exercise:



Theorem 3:  The solution space to the second order homogeneous linear differential equation

y p x y q x y = 0 

is 2-dimensional on any interval I for which the hypotheses of the existence-uniqueness theorem hold.

proof:  

Pick any x0 I .  Find solutions y1 x , y2 x  to initial value problems at x0 so that the so-called
Wronskian matrix for y1, y2 at x0

W y1, y2 x0 =
y1 x0 y2 x0

y1 x0 y2 x0
 

is invertible  (i.e. 
y1 x0

y1 x0
,

y2 x0

y2 x0
 are a basis for 2 , or equivalently so that the determinant of 

the Wronskian matrix (called just the Wronskian) is non-zero at x0 ).

     You may be able to find suitable y1, y2 by a method like we used in the previous example, but the 
existence-uniqueness theorem guarantees they exist even if you don't know how to find formulas for them.

Under these conditions, the solutions y1, y2 are actually a basis for the solution space!  Here's why:

 span:  the condition that the Wronskian matrix is invertible at x0 means we can solve each IVP there with
a linear combination y = c1y1 c2y2 :   In that case, to solve the IVP

y p x y q x y = 0
y x0 = b0 
y x0 = b1 

we set
y x = c1y1 x c2y2 x .

At x0 we wish to find c1 , c2 so that
c1 y1 x0 c2 y2 x0 = b0 

c1 y1 x0 c2 y2 x0 = b1.

This system is equivalent to the the matrix equation
y1 x0 y2 x0

y1 x0 y2 x0

c1

c2
=

b0

b1
.

When the Wronskian matrix at x0 has an inverse, the unique solution c1, c2
T is given by



c1

c2
=

y1 x0 y2 x0

y1 x0 y2 x0

1
b0

b1
.

Since the uniqueness theorem says each IVP has a unique solution,  we've found it!

y x = c1y1 x c2y2 x .

   Span:  Since each solution y x  to the differential equation solves some initial value problem at x0,  this

gives all solutions, as we let b0, b1
T vary freely in 2.  So each solution y x  is a linear combination of 

y1, y2.  Thus y1, y2  spans the solution space.  

     Linear independence:  If we have the identity
c1y1 x c2y2 x = 0

then by differentiating each side with respect to x we also have
c1y1 x c2y2 x = 0.

Evaluating at x = x0 this is the system
c1 y1 x0 c2 y2 x0 = 0 

c1 y1 x0 c2 y2 x0 = 0  

y1 x0 y2 x0

y1 x0 y2 x0

c1

c2
=

0

0

so

c1

c2
=

y1 x0 y2 x0

y1 x0 y2 x0

1
0

0
=

0

0
.  



Theorem 4:  All solutions to the nonhomogeneous second order linear DE
y p x y q x y = f x  

are of the form y = yP yH where yP is any single particular solution and yH is some solution to the 
homogeneous DE.  (yH is called yc, for complementary solution, in the text).  Thus, if you can find a single 
particular solution to the nonhomogeneous DE, and all solutions to the homogeneous DE, you've actually 
found all solutions to the nonhomogeneous DE.  (You had a homework problem related to this idea, 
3.4.40, in homework 5, but in the context of matrix equations, a week or two ago.  The same idea 
reappears in your current lab, in the last problem.)

proof:  Make use of the fact that 
L y y p x y q x y

is a linear operator.  In other words, use the linearity properties

     (1) L y1 y2 = L y1 L y2  

     (2) L c y = c L y , c  .



In Monday's notes we found that the general solution to the homogeneous differential equation 

y 2 y 3 y = 0 

is
yH = c1 e x   c2 e 3 x .

Now consider the non-homogeneous differential equation
y 2 y 3 y = 6.

Notice that 

yP = 2 
is one particular solution to the differential equation.

Exercise 1a)  Solve the initial value problem 
y 2 y 3 y = 6. 

y 0 = 1 
y 0 = 5 

with a solution to the differential equation of the form

y = yP yH = 2  c1 e x   c2 e 3 x.

1b)  Notice that the same algebra shows you could solve every initial value problem 
 

y 2 y 3 y = 6. 
y 0 = b0 
y 0 = b1

with a solution of the form

y = yP yH = 2  c1 e x   c2 e 3 x

so by the uniqueness theorem for initial value problems, these ARE all the solutions to the differential 
equation even though we did not get them a direct method like we used for first order linear differential 
equations.





The theory for nth order linear differential equations is conceptually the same as for second order...

Definition:  An nth order linear differential equation for a function y x  is a differential  equation that can 
be written in the form

An x y n An 1 x y n 1  ... A1 x y A0 x y = F x  .
We search for solution functions y x defined on some specified interval I of the form a x b, or 
a, , , a  or (usually) the entire real line , .  In this chapter we assume the function An x

0 on I, and divide by it in order to rewrite the differential equation in the standard form

y n an 1y n 1 ... a1 y a0 y = f .

(an 1,... a1, a0, f are all functions of x, and the DE above means that equality holds for all value of x in 
the interval I .)

Theorem 1 (Existence-Uniqueness Theorem):  Let an 1 x , an 2 x ,... a1 x , a0 x ,  f x  be 
specified continuous functions on the interval I , and let x0 I .  Then there is a unique solution y x  to 
the initial value problem

y n a
n 1

 y n 1 ... a
1
 y a

0
 y = f

y x
0

= b
0
 

y x
0

= b
1
 

y x
0

= b
2
 

:  
y n 1 x

0
= b

n 1
 

and y x  exists and is n times continuously differentiable on the entire interval I .



The differential equation

y n an 1y n 1 ... a1 y a0 y = f 

 is called linear because the operator L defined by
L y y n an 1 y n 1 ... a1 y a0 y 

satisfies the so-called linearity properties

     (1) L y1 y2 = L y1 L y2  

     (2) L c y = c L y , c  .

  The proof that L satisfies the linearity proporties is just the same as it was for the case when n = 2, 
which we checked.  

The following two theorems only use the linearity properties of the operator L.  I've kept the same 
numbering we used for the case n = 2.

Theorem 2:  The solution space to the homogeneous linear DE
y n an 1 y

n 1 ... a1 y a0 y = 0 
is a subspace.

Theorem 4:  The general solution to the nonhomogeneous nth order linear DE
y n an 1 y

n 1 ... a1 y a0 y = f 
is y = yP yH where yP is any single particular solution and yH is the general solution to the homogeneous 
DE.  (yH is called yc, for complementary solution, in the text).



Theorem 3:  The solution space to the nth order homogeneous linear differential equation
y n an 1 y n 1 ... a1 y a0 y 0 

is n-dimensional.  Thus, any n independent solutions y1, y2, ... yn will be a basis, and all homogeneous 
solutions will be uniquely expressible as linear combinations

yH = c1y1 c2y2  ... cnyn.

proof:  By the existence half of Theorem 1, we know that there are solutions for each possible initial value 
problem for this (homogenenous case) of the IVP for nth order linear DEs.  So, pick solutions 
y1 x , y2 x , .... yn x  so that their vectors of initial values (which we'll call initial value vectors)

y
1

x
0

y
1

x
0

y
1

x
0

:       

y
1
n 1 x

0

,

y
2

x
0

y
2

x
0

y
2

x
0

:       

y
2
n 1 x

0

,   ... ,  

y
n

x
0

y
n

x
0

y
n

x
0

:       

y
n
n 1 x

0

 

are a basis for n (i.e. these n vectors are linearly independent and span n .  (Well, you may not know 
how to "pick" such solutions, but you know they exist because of the existence theorem.)

Claim:  In this case, the solutions y1, y2, ... yn are a basis for the solution space.  In particular, every 
solution to the homogeneous DE is a unique linear combination of these n functions and the dimension of 
the solution space is n .... discussion on next page.



    Check that y1, y2, ... yn span the solution space:  Consider any solution y x  to the DE.  We can 
compute its vector of initial values

y x
0

y x
0

y x
0

:       

y n 1 x
0

b
0

b
1

b
2

:

b
n 1

  .

Now consider a linear combination z = c1y1 c2 y2 ... cn yn .  Compute its initial value vector, and 
notice that you can write it as the product of the Wronskian matrix at x0 times the vector of linear 
combination coefficients:

z x
0

z x
0

:

z n 1 x
0

=

y
1

x
0

y
2

x
0

... y
n

x
0

y
1

x
0

y
2

x
0

... y
n

x
0

: : ... :

y
1
n 1 x

0
y

2
n 1 x

0
... y

n
n 1 x

0

c
1

c
2

:

c
n

 .

We've chosen the y1, y2, ... yn so that the Wronskian matrix at x0 has an inverse, so the matrix equation

y
1

x
0

y
2

x
0

... y
n

x
0

y
1

x
0

y
2

x
0

... y
n

x
0

: : ... :

y
1
n 1 x

0
y

2
n 1 x

0
... y

n
n 1 x

0

c
1

c
2

:

c
n

=

b
0

b
1

:

b
n 1

 

has a unique solution c  .  For this choice of linear combination coefficients, the solution 
c1y1 c2y2  ... cnyn has the same initial value vector at x0 as the solution y x  .  By the uniqueness 
half of the existence-uniqueness theorem, we conclude that

  y x = z x = c1y1 c2y2  ... cnyn .
Thus y1, y2, ... yn span the solution space.  

    linear independence:  If a linear combination c1y1 c2y2  ... cnyn 0, then differentiate this 
identity n 1 times, and then substitute x = x0 into the resulting n equations.  This yields the Wronskian 

matrix equation above, with  b0, b1,... bn 1
T = 0, 0,..., 0 T.  So the matrix equation above implies that 

c1, c2, ...cn
T = 0.  So y1, y2, ... yn are also linearly independent.  

    Thus  y1, y2, ... yn are a basis for the solution space and the general solution to the homogeneous DE 
can be written as

yH = c1y1 c2y2  ... cnyn .



Let's do some new exercises that tie these ideas together.  (We may do these exercises while or before we 
wade through the general discussions on the previous pages!)

Exercise 2)  Consider the 3rd order linear homogeneous DE for y x :
y 3 y y 3 y = 0.

Find a basis for the 3-dimensional solution space, and the general solution. Use the Wronskian matrix (or 
determinant) to verify you have a basis.  Hint: try exponential functions.



Exercise 3a)  Find the general solution to 
y 3 y y 3 y = 6 .

Hint:  First try to find a particular solution ... try a constant function.

3b)  Set up the linear system to solve the initial value problem for this DE, with 
y 0 = 1, y 0 = 2, y 0 = 7 .  Does the form agree with the actual solution?





Wed March 7:  
5.3  Solving constant coefficient homogeneous linear differential equations

Announcements: 

Warm-up Exercise:



For the next two sections we focus homogneous linear differential equations with constant coefficients.  
Section 5.3 contains the algorithms we'll need and in section 5.4 we'll apply the general theory to the 
unforced mass-spring differential equation.

5.3:  Algorithms for the basis and general (homogeneous) solution to

L y y n an 1y n 1 ... a1 y a0 y = 0
when the coefficients an 1, an 2,  ... a1, a0 are all constant.

step 1)  Try to find a basis for the solution space made of exponential functions....try y x = er x .  In this 
case

L y = er x rn an 1rn 1 ...  a1r a0 = er x p r  .

We call this polynomial p r  the characteristic polynomial for the differential equation, and can read off 
what it is directly from the expression for L y  if we want.  For each root rj of p r , we get a solution 

e
r

j
 x
 to the homogeneous DE.

Case 1)  If p r  has n distinct (i.e. different) real roots r1, r2, ..., rn , then

e
r

1
x
, e

r
2
x
, ... , e

r
n
x
 

is a basis for the solution space;  i.e. the general solution is given by

yH x = c1e
r

1
x

c2e
r

2
x

 ...  cne
r

n
x
 .

Example:    The differential equation
y 3 y y 3 y = 0

has characteristic polynomial
p r = r3 3 r2 r 3 = r 3 r2 1 = r 3 r 1 r 1

so the general solution to 
y 3 y y 3 y = 0

is
yH x = c1ex c2e x  c3e 3 x .



Exercise 1)  By construction,  e
r

1
x
, e

r
2
x
, ... , e

r
n
x
 all solve the differential equation.  Show that they're 

linearly independent.  This will be enough to verify that they're a basis for the solution space, since we 
know the solution space is n-dimensional.  Hint:  The easiest way to show this is to list your  roots so that 
r1 r2 ... rn and to use a limiting argument.



Case 2)  Repeated real roots.  In this case p r  has all real roots r1, r2, ... rm (m n  with the rj all 
different, but some of the factors r rj  in p r  appear with powers bigger than 1 .  In other words, 
p r  factors as

p r = r r1

k
1 r r2

k
2 ... r rm

k
m  

with some of the kj 1 , and k1 k2 ... km = n .

Start with a small example:  The case of a second order DE for which the characteristic polynomial has a 
double root.  

Exercise 2)  Let r1 be any real number.  Consider the homogeneous DE

L y y 2 r1 y r1
2 y = 0 .

with p r = r2 2 r1 r r
1
2 = r r1

2 , i.e. r1 is a double root for p r . Show that e
r

1
 x
, x e

r
1
 x
  are a 

basis for the solution space to L y = 0 , so the general homogeneous solution is 

yH x = c1e
r

1
 x

 c2 x e
r

1
 x
 .  Start by checking that x e

r
1

 x
 actually (magically?) solves the DE.

(We may wish to study a special case y 6 y 9 y = 0 .)



Here's the general algorithm:  If

 p r = r r1

k
1 r r2

k
2 ... r rm

k
m  

then (as before) e
r

1
x
, e

r
2
x
, ... , e

r
m

x
 are independent solutions, but since m n there aren't enough of them 

to be a basis.  Here's how you get the rest:  For each kj 1 , you actually get independent solutions

e
r

j
 x
, x e

r
j
 x
, x2e

r
j
 x
,..., x

k
j

1
e

r
j
 x
 .

This yields kj solutions for each root rj , so since  k1 k2 ... km = n you get a total of n solutions to 
the differential equation.  There's a good explanation in the text as to why these additional functions 
actually do solve the differential equation, see pages 316-318 and the discussion of "polynomial 
differential operators".  I've also made a homework problem in which you can explore these ideas.  Using 
the limiting method we discussed earlier, it's not too hard to show that all n of these solutions are indeed 
linearly independent, so they are in fact a basis for the solution space to L y = 0 .

Exercise 3)  Explicitly antidifferentiate to show that the solution space to the differential equation for y x  
y 4 y 3 = 0 

agrees with what you would get using the repeated roots algorithm in Case 2 above.  Hint: first find 
v = y , using v v = 0, then antidifferentiate three times to find yH.  When you compare to the repeated 

roots algorithm, note that it includes the possibility r = 0 and that e0 x = 1.

Case 3)  Complex number roots - this will be our surprising and fun topic on Friday.  Our analysis will 
explain exactly how and why trig functions and mixed exponential-trig-polynomial functions show up as 
solutions for some of the homogeneous DE's you worked with in your homework and lab for this past 
week.  This analysis depends on Euler's formula, one of the most beautiful and useful formulas in 
mathematics:

ei = cos  i sin
for i2 = 1.



Fri Mar 9
 
5.3  Solving constant coefficient homogeneous linear differential equations: complex roots in the 
characteristic polynomial

Announcements: 

Warm-up Exercise:



5.3 continued. How to find the solution space for nth order linear homogeneous DE's with constant 
coefficients, and why the algorithms work.

Strategy:  In all cases we first try to find a basis for the n dimensional solution space made of or related to
exponential functions....trying y x = er x yields

L y = er x rn an 1rn 1 ...  a1r a0 = er x p r  .

The characteristic polynomial p r  and how it factors are the keys to finding the solution space to 
L y = 0.  There are three cases, of which the first two (distinct and repeated real roots) are in yesterday's 
notes.

Case 3)  p r  has complex number roots.  This is the hardest, but also most interesting case.The punch 
line is that exponential functions er x still work, except that r = a b i ; but, rather than use those complex 
exponential functions to construct solution space bases we decompose them into real-valued solutions that 
are products of exponential and trigonometric functions.



To understand how this all comes about, we need to learn Euler's formula . This also lets us review some 
important Taylor's series facts from Calc 2.  As it turns out, complex number arithmetic and complex 
exponential functions actually are important in many engineering and science applications.

Recall the Taylor-Maclaurin formula from Calculus

f x f 0 f 0 x
1
2!

f 0 x2 1
3!

f 0 x3 ....
1
n!

f n 0 xn ....  

(Recall that the partial sum polynomial through order n  matches f and its first n derivatives at x0 = 0.  
When you studied Taylor series in Calculus you sometimes expanded about points other than x0 = 0.  You 
also needed error estimates to figure out on which intervals the Taylor polynomials actually coverged back 
to f .)

Exercise 1)  Use the formula above to recall the three very important Taylor series for

1a)  ex =   

1b)  cos x =   

1c)  sin x =    

In Calculus you checked that these series actually converge and equal the given functions, for all real 
numbers x.
Exercise 2)  Let x = i  and use the Taylor series for ex as the definition of ei  in order to derive Euler's 
formula:

ei = cos i sin  .



From Euler's formula it makes sense to define
ea b i eaeb i = ea cos b i sin b  

for a, b .  So for x  we also get

e a b i x = ea x cos b x i sin b x = ea xcos b x i ea xsin b x  .

For a complex function f x i g x  we define the derivative by

  Dx f x i g x f x i g x  .

It's straightforward to verify (but would take some time to check all of them) that the usual differentiation 
rules, i.e. sum rule, product rule, quotient rule, constant multiple rule, all hold for derivatives of complex 
functions.  The following rule pertains most specifically to our discussion and we should check it:

Exercise 3)  Check that Dx e a b i x = a b i e a b i x , i.e. 

Dx e
r x = r er x  

even if r is complex.  (So also Dx
2 er x = Dxr er x = r2 er x, Dx

3 er x = r3 er x , etc.)



Now return to our differential equation questions, with 
L y y n an 1y n 1 ... a1 y a0 y .

Then even for complex r = a b i   (a, b , our work above shows that

L er x = er x rn an 1rn 1 ...  a1r a0 = er x p r  .

So if r = a b i is a complex root of p r  then er x is a complex-valued function solution to L y = 0.  
But L is linear, and because of how we take derivatives of complex functions, we can compute in this case 
that

0 0 i = L er x = L ea xcos b x i ea xsin b x  

= L ea xcos b x i L ea xsin b x  .

Equating the real and imaginary parts in the first expression to those in the final expression (because that's 
what it means for complex numbers to be equal) we deduce

0 = L ea xcos b x  
0 = L ea xsin b x  .

Upshot:  If r = a b i  is a complex root of the characteristic polynomial p r  then
y1 = ea xcos b x  

y2 = ea xsin b x
are two solutions to L y = 0 .  (The conjugate root a b i would give rise to y1, y2 , which have the 
same span.



Case 3)  Let L  have characteristic polynomial
p r = rn an 1rn 1 ...  a1r a0  

with real constant coefficients an 1,..., a1, a0 .  If r a b i k is a factor of p r   then so is the 

conjugate factor r a b i k .  Associated to these two factors are 2 k real and independent solutions 
to L y = 0, namely

ea xcos b x , ea xsin b x  
x ea xcos b x , x ea xsin b x  

:                 :   
xk 1e

a x
cos b x , xk 1e

a x
sin b x

Combining cases 1,2,3, yields a complete algorithm for finding the general solution to L y = 0, as long as
you are able to figure out the factorization of the characteristic polynomial p r  .

Exercise 4)  Find a basis for the solution space of functions y x  that solve
y 9 y = 0 .

(You were told a basis in the last problem of last week's lab....now you know where it came from.)

Exercise 5)  Find a basis for the solution space of functions y x  that solve
y 6 y 13 y = 0 .

Exercise 6)  Suppose a 7th order linear homogeneous DE has characteristic polynomial 

p r = r2 6 r 13
2

r 2 3 .
What is the general solution to the corresponding homogeneous DE? 


