
Math 2250-004  Week 8 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes include material from 4.2-4.4 and an introduction to Chapter 5.

Mon Feb 26
4.3, 4.2 linear combinations and independence of vectors, vector subspaces of 2, 3, n .

Announcements: 

Warm-up Exercise:

 



We've been discussing ideas related to linear combinations of vectors.  After the weekend, we should 
review, to recall these concepts:

A linear combination of the vectors in the set  v1, v2,  ... vn  is 
any vector v that is a sum of scalar multiples of those vectors, 

i.e. any v expressible as
v = c1v1 c2 v2   ...  cnvn.

The span of the vectors in the set v1, v2,  ... vn  is
the collection of all possible linear combinations:

span v1, v2,  ... vn v = c1v1 c2 v2   ...  cnvn such that each ci , i = 1, 2,...n

The vectors in the set  {v1, v2,  ... vn  are linearly dependent means

 it is possible to satisfy c1v1 c2 v2   ...  cnvn = 0 with not all of the weights c1, c2, ...cn = 0. 

(Equivalently, at least one  vj can be expressed as a linear combination of some of the other vectors in the 
collection.)

The vectors in the set  v1, v2,  ... vn  are linearly independent means

c1v1 c2 v2   ...  cnvn = 0         c1 = c2 =...= cn = 0.

(Equivalently, no vj can be expressed as a linear combination of some of the other vectors in the 
collection.)



NEW:
Definition:  Let V = span v1, v2,  ... vn .  If the vectors in the set v1, v2,  ... vn  are linearly independent, 
then we say that they are a basis for V.  And, we say that the dimension of V is  n.

Example   The set of vectors 

1

0

0
,

0

1

0
,

0

0

1
 spans 3 and is linearly independent, so is a basis for 

3.  The dimension of 3 is 3!

Let's review what we were doing at the end of class on Friday, in light of these new definitions...



Exercise 3)  Consider the two vectors v1 = 1, 0, 0 T, v2 = 0, 1, 2 T 3.
3a)  Sketch these two vectors as position vectors in 3, using the axes below.

3b)  What geometric object is span v1  ?  (Remember, we are identifying position vectors with their 
endpoints.)  Sketch a portion of this object onto your picture below.  Remember though, the "span" 
continues beyond whatever portion you can draw.

3c)  What geometric object is span v1, v2  ?  Sketch a portion of this object onto your picture below.  
Remember though, the "span" continues beyond whatever portion you can draw.



3d)  What implicit equation must vectors b1, b2, b3
T satisfy in order to be in  span v1, v2 ?  Hint: For 

what b1, b2, b3
T can you solve the system

c1

1

0

0
c2

0

1

2
=

b1

b2

b3

  

for c1, c2 ?  Write this an augmented matrix problem and use row operations to reduce it, to see when you 
get a consistent system for c1, c2.



5b)  Show that the vectors

v
1

=

1
0
0

,  v
2

=

0
1
2

, v
3

=

3
4
8

    

are linearly dependent (even though no two of them are scalar multiples of each other).  What does this 
mean geometrically about the span of these three vectors?
Hint:  You might find this computation useful: 

1 0 3

0 1 4

0 2 8
             reduces to       

1 0 3

0 1 4

0 0 0

Exercise 6)  Are the vectors

v
1

=

1
0
2

,  v
2

=

0
1
2

, w
3

=

1
1
1

 

linearly independent?  What is their span?  Hint:
1 0 1

0 1 1

2 2 1

            reduces to            

1 0 0

0 1 0

0 0 1



Exercise 1)  Use properties of reduced row echelon form matrices to answer the following questions:

1a) Why must more than 3 vectors in 3 always be linearly dependent?

1b)  Why can fewer than 3 vectors never span 3 ?
(So every basis of 3 must have exactly three vectors.)

1c)  If you are given a set of 3 vectors v1, v2, v3  in 3, what is the condition on the reduced row echelon
form of the 3 3 matrix that has these vectors as columns,  v1 v2 v3   that guarantees they're linearly 
independent?  That guarantees they span 3 ?  That guarantees they're a basis of 3 ?

1d)  What is the dimension of 3?

1e)  How does this discussion generalize to n ?



New concepts for this week, related to linear combinations

In addition to vectors in n, functions are objects that we can add and scalar multiply.  (So are matrices).  
A lot of our discussions about  linear combination concepts - such as "span" and "linear independence" 
apply in these more general settings, and so we introduce the abstract idea of a "vector space".  (Trust me, 
this will help us in Chapter 5, when we return to differential equations.)

Definition: A vector space V is a collection of objects together with and "addition" operation "+", and a 
scalar multiplication operation, so that the rules below all hold.  

(α)  Whenever f, g V then f g V .  (closure with respect to addition)
(β)   Whenever f V and c , then c f V.  (closure with respect to scalar multiplication)

As well as:

(a)  f g = g f   (commutative property)

(b)  f g h = f g h  (associative property)

(c)  0 V so that f 0 = f is always true.  

(d)  f V f V so that f f = 0  (additive inverses)

(e)  c f g = c f c g   (scalar multiplication distributes over vector addition)

(f)  c1 c2 f = c1 f c2 f  (scalar addition distributes over scalar multiplication)

(g)  c1 c2 f = c1c2 f  (associative property)

(h)  1 f = f, 1 f = f,  0 f = 0   (these last two actually follow from the others).

Notice that  V = m, m = 1, 2, 3, ..., with the usual vector addition and scalar multiplication, defined 
component-wise, satisfy these axioms.  But we've actually already been seeing some vector spaces which 
are not m, but are hiding in plain sight within m.  These are  subspaces (of m), which are their "own" 
vector spaces, contained within m. (When you read the word subspace it might help if you say to 
yourself, sub-vector-space, for that's what these are).  

What makes a subset of m (or any other vector space)  into its own vector space?  The answer is on the 
next page



Definition A subset W of a vector space V is a subspace  if W is closed under addition and scalar 
multiplication, i.e. if the two vector space closure axioms hold:

                       f, g W f g W,     
                     f W, c c f W. 

In this case W inherits the other vector space axioms (a)-(h) just because they hold for all the vectors in V.  
(Check!)  One axiom in particular is worth keeping in mind, namely from closure under scalar 
multiplication, ,  and the last axiom in (h), we see that every subspace contains the zero vector.  So if 
you're checking whether a collection of objects is a subspace and the zero vector is not in the collection, 
you immediately know that your collection is not a subspace.  You can see how W inherits the rest of the 
vector spaces axioms, once ,   hold:

(a)  f g = g f   (commutative property)

(b)  f g h = f g h  (associative property)

(c)  0 V so that f 0 = f is always true.  

(d)  f V f V so that f f = 0  (additive inverses)

(e)  c f g = c f c g   (scalar multiplication distributes over vector addition)

(f)  c1 c2 f = c1 f c2 f  (scalar addition distributes over scalar multiplication)

(g)  c1 c2 f = c1c2 f  (associative property)

(h)  1 f = f, 1 f = f,  0 f = 0   (these last two actually follow from the others).

Definition:  Let V be a vector space.  Suppose V = span v1, v2,  ... vn   AND that the set of vectors 
v1, v2,  ... vn  is linearly independent.  Then v1, v2,  ... vn  is called a basis for V.  The number of 

vectors in this set, i.e. "n", is called the dimension of V.  (It turns out that all bases for a vector space have 
the same number of vectors.)



Exercise 2)  Most subsets of  m are  not   subspaces.   (Remember, "sub vector spaces").  Show that 

2a)   W = x, y T 2 s.t. x2 y2 = 4   is not a subspace of 2 .

2b)   W = x, y T 2 s.t. y = 3 x 1   is not a subspace of 2 .

2c)   W = x, y T 2 s.t. y = 3 x  is a subspace of 2 .   Can you express this subspace as the span of 
a single vector in 2 ?



Tues Feb 27
4.2 - 4.3  subspaces and bases.

Announcements: 

Warm-up Exercise:



We've been talking about vector spaces and subspaces, with examples in 2, 3, n.

Key facts about how subspaces (sub vector spaces) DO arise:

There are two main ways that subspaces arise:  (These ideas will be important when we return to 
differential equations, in Chapter 5, although it's probably difficult to envision what they have to do with 
differential equations right now.)

1)   W = span v1, v2, ... , vn  is always a subspace.
Expressing a subspace this way is an explicit way to describe the subspace W, because you are "listing" all
of the vectors in it.  

Why  W = span v1, v2, ... , vn  is a subspace:  Let v, w W.  In other words, we can express
v = c1v1 c2v2 ... cnvn
w = d1v1 d2v2 ... dnvn .

So,

v w = c1v1 c2v2 ... cnvn  d1v1 d2v2 ... dnvn . 

After using the vector space axioms (addition is commuative and associative, and scalar addition 
distributes over scalar multiplication), we can rewrite

v w = c1 d1 v1 c2 d2 v2 ... cn dn vn W  .

This verifies  (α).

Now let c .  Then 
c v = c c1v1 c2v2 ... cnvn   =  cc1v1 cc2v2 ... ccnvn W   

which verifies .

(And, notice that 0 v = 0 W.)

Example:  From yesterday's discussion, an example subspace in 3:

W = span v1 =

1

0

0
, v2 =

0

1

2
is a 2-dimensional subspace, i.e. plane through the origin.



The other way subspaces arise (in n) :

2)  Let A be an m n matrix.  Let V = x n such that A x = 0 .  Then V is a subspace.  (We call this 
collection of vectors the "homogeneous solution space" or "null space" of A.  

Note that this is an implicit way to describe the subspace V  because we're only specifying a homogeneous 
matrix equation that the vectors in V must satisfy, but you're not saying what the vectors are.  

Why V is a subspace:  Let v, w V  

Av = 0, Aw = 0         A v w =  Av Aw   =  0 0 = 0,            v w V   (verifies α)
and let c  

Av = 0       A c v = c A v = c 0 = 0,      c v V  (verfies β).

(and 0 V, since A 0 = 0.)
..............................................................................

Example:  Continuing the example from the previous page, the plane

W = span v1 =

1

0

0
, v2 =

0

1

2

could have been described implicitly as the collection of position vectors for points x, y, z  satisfying the 
very small homogeneous matrix equation

0 x 2 y z = 0.

0 2 1

x

y

x
= 0 .



Exercise 1)  Use geometric reasoning to argue why the only subspaces of 2 are as follows.  Also, what 
are the dimensions of these subspaces?

(0)  The single vector 0, 0 T , or

(1)  A line through the origin, i.e. span u  for some non-zero vector u , or

(2)  All of 2 .

Exercise 2)  Use matrix theory to show that the only subspaces of 3 are 
(0)  The single vector 0, 0, 0 T , or

(1)  A line through the origin, i.e. span u  for some non-zero vector u , or

(2)  A plane through the origin, i.e.span u, v  where u, v are linearly independent, or

(3)  All of 3 .





Wed Feb 28
4.3 - 4.4.  linear independence, bases and dimension for vector spaces.

Announcements: 

Warm-up Exercise:



Definition  Let V be a vector space.  Recall that a basis for V is 

a collection of vectors  v1, v2, ... vn  that is linearly independent and that spans V. 

We use the word "basis", because from just the vectors in this collection we are able to reconstruct the 
entire space - by taking linear combinations.  AND  each vector in V can be expressed in one and only one 
way as a linear combination of the vectors in the basis, so there is no unneccesary reduncancy:

Theorem  For a collection linearly independent vectors  v1, v2,  ... vn , every vector v in their span can be 
written as v = d1v1 d2v2  ... dnvn uniquely, i.e. for exactly one choice of linear combination 
coefficients d1, d2,...dn .  This is not true if vectors are dependent.

proof:



Usually in applications we do not start with a basis for a subspace - rather this is the goal we search for.  

For example, if we wish to find a basis for the homogeneous solution space 
W = x n such that Am nx = 0 , then the algorithm we already learned in Chapter 3 will work, if we 
interpret the results correctly:  Reduce the augmented matrix, backsolve and write the explicit solution in 
linear combination form. The vectors that you are taking linear combinations of will always span the 
solution space, by construction.  If you follow this algorithm the generating vectors will automatically be 
linearly independent, so they will be a basis for the solution space.  This is illustrated in the large example 
below:

Exercise 1   Consider the matrix equation A x = 0 , with the matrix A (and its reduced row echelon form) 
shown below:

A  

1 2 0 1 2

2 4 1 0 7

1 2 1 3 1
          reduces to      

1 2 0 1 2

0 0 1 2 3

0 0 0 0 0
  

Find a basis for the solution space  W = x 5 s.t. A x = 0   by backsolving, writing your explicit 
solutions in linear combination form, and extracting a basis.  Explain why these vectors span the solution 
space and verify that they're linearly independent.



Exercise 2)   Now we're going to study a different subspace that turns out in this case to be connected to 
the same matrix A.  Suppose we wish to understand the subspace of 3 that is given by

V = span

1

2

1
,  

2

4

2
,

0

1

1
,  

1

0

3
,  

2

7

1
.

This is a subspace of 3 - so what kind is it?  And can we find a basis?  Clearly the original five vectors 
can't be a basis, because more than three vectors in 3 are always linearly dependent.  If we can find 
dependencies we'll be able to shrink the number of vectors in our generating set for V until we reduce it to 
a basis.  This is how:

Let A be the matrix that has those five vectors as columns.  (In this case it's the same matrix A as on the 
previous page.)

A  

1 2 0 1 2

2 4 1 0 7

1 2 1 3 1

Focus on the idea that solutions to homogeneous matrix equations correspond exactly to linear 
dependencies between the columns of the matrix. (If it helps, think of renaming the vector x in the example
above, with a vector c of linear combination coefficients; then recall the prime Chapter 4 algebra fact that

A c = c1col1 A c2col2 A ... cncoln A  .

So any solution c to A c = 0 is secretly a columns dependency, and vise-verse.)

    Now, since the solution set to a homogeneous linear system does not change as you do elementary row 
operations to the augmented matrix, column dependencies also do not change.  



2a)  Check how column dependencies don't change as you reduce a matrix,  by reading off "easy" column 
dependencies in the reduced matrix; seeing that they are also dependencies in the original matrix;  also, that 
these dependencies actually correspond to the basis of the homogeneous solution space that you were 
studying in exercise 1.  Magic!  We will use this magic in important interesting ways, later in the course.

A  

1 2 0 1 2

2 4 1 0 7

1 2 1 3 1
          reduces to      

1 2 0 1 2

0 0 1 2 3

0 0 0 0 0
 

2b)  Find a basis for 

V = span

1

2

1
,  

2

4

2
,

0

1

1
,  

1

0

3
,  

2

7

1
.

(And identify which type of subspace of 3 we're dealing with here.)



Exercise 3)  (This exercise explains why any given matrix has only one reduced row echelon form, no 
matter what sequence of elementary row operations one uses to find it.  We didn't have the tools to explain 
why this fact was true earlier, back in Chapter 3.)  Let B4 5 be a matrix whose columns satisfy the 
following dependencies:

col1 B 0   (i.e. is independent)
col2 B = 3 col1 B   

col3 B  is independent of column 1
col4 B  is independent of columns 1,3.

col5 B = 3 col1 B 2 col3 B col4 B .
What does the reduced row echelon form of B have to be?



Some important facts about spanning sets, independence, bases and dimension follow from one key fact, 
and then logic.  We will want to use these facts going forward, as we return to studying differential 
equations on Friday.

key fact:  If n vectors v1, v2, ... vn span a subspace W then any collection w1, w2, ... wN of vectors in W  
with N n will always be linearly dependent.  (This is explained on pages 254-255 of the text, and has to 
to do with matrix facts that we already know.)  Notice too that this fact fits our intuition based on what we 
know in the special cases that we've studied, in particular W = n.)

Thus:
1)  If a finite collection of vectors in W is linearly independent, then no collection with fewer vectors can 
span all of W .  (This is because if the smaller collection did span, the larger collection wouldn't have been 
linearly independent after all, by the key fact.)

2)  Every basis of W has the same number of vectors, so the concept of dimension is well-defined and 
doesn't depend on choice of basis.  (This is because if v1, v2, ... vn are a basis for W then every larger 
collection of vectors is dependent by the key fact and every smaller collection fails to span by (1), so only 
collections with exactly n vectors have a chance to be bases.)

3)  Let the dimension of W be the number n, i.e. there is some basis  v1, v2, ... vn for W.  Then if vectors 
w1, w2, ... wn span W then they're automatically linearly independent and thus a basis.  (If they were 
dependent we could delete one of the wj that was a linear combination of the others and still have a 
spanning set.  This would violate (1) since v1, v2, ... vn are linearly independent.)

4)  Let the dimension of W be the number n, i.e. there is some basis  v1, v2, ... vn for W.  Then if 
w1, w2, ... wn are in W and are linearly independent, they automatically span W and thus are a basis.  (If 
they didn't span W we could augment with a vector wn 1 not in their span and have a collection of n 1 
still independent* vectors in W, violating the key fact.

*  Check: If w1, w2, ... wn are linearly independent, and wn 1 span w1, w2, ... wn , then 
w1, w2, ... wn, wn 1 are also linearly independent. This fact generalizes the ideas we used when we 
figured out all possible subspaces of 3.  Here's how it goes:   

To show the larger collection is still linearly independent study the equation
c1w1 c2w2  ... cnwn d wn 1 = 0 .

Since w span w1, w2, ... wn  it must be that d = 0 (since otherwise we could solve for wn 1 as a 
linear combination of  w1, w2, ... wn).  But once d = 0 , we have

c1w1 c2w2  ... cnwn = 0
which implies c1 = c2 =...= cn = 0 by the independence of w1, w2, ... wn .



Fri Mar 2
5.1  Second order linear differential equations, and vector space theory connections.

In Chapter 5 we'll be using vector space theory to understand solutions to differential equations!

Announcements: 

Warm-up Exercise:



Exercise 0)  In Chapter 5 we focus on the vector space
V = C f :  s.t. f is a continuous function  

and its subspaces.  Verify that the vector space axioms for linear combinations are satisfied for this space 
of functions.  Recall that the function f g is defined by f g x f x g x  and the scalar 
multiple c f x  is defined by c f x c f x  .   What is the zero vector for functions?

Definition: A vector space is a collection of objects together with and "addition" operation "+", and a scalar
multiplication operation, so that the rules below all hold.  

 (α)  Whenever f, g V then f g V .  (closure with respect to addition)

 (β)   Whenever f V and c , then c f V.  (closure with respect to scalar 
multiplication)

As well as:
(a)  f g = g f   (commutative property)

(b)  f g h = f g h  (associative property)

(c)  0 V so that f 0 = f is always true.  

(d)  f V f V so that f f = 0  (additive inverses)

(e)  c f g = c f c g   (scalar multiplication distributes over vector addition)

(f)  c1 c2 f = c1 f c2 f  (scalar addition distributes over scalar multiplication)

(g)  c1 c2 f = c1c2 f  (associative property)

(h)  1 f = f, 1 f = f,  0 f = 0   (these last two actually follow from the others).



Because the vector space axioms are exactly the arithmetic rules we used to work with linear combination 
equations, all of the concepts and vector space theorems we talked about for m and its subspaces make 
sense for the function vector space V and its subspaces.  In particular we can talk about

     the span of a finite collection of functions f1, f2, ... fn , span f1, f2, ... fn  .

     linear independence/dependence for a collection of functions f1, f2, ... fn  .

     subspaces of V 

     bases and dimension for finite dimensional subspaces.  (The function space V in Exercise 0 itself is 
infinite dimensional, meaning that no finite collection of functions spans it.)



Exercise 1  Consider the three functions with domain , given by

f1 x = 1,   f2 x = x,  f3 x = x2.
1a)  Describe span f1, f2,  f3 .

1b)  Is the set f1, f2,  f3  linearly dependent or linearly independent? 



Definition:  A second order linear differential equation for a function y x  is a differential  equation that 
can be written in the form

A x y B x y  C x y = F x  .

We search for solution functions y x defined on some specified interval I of the form a x b, or 
a, , , a  or (usually) the entire real line , .  In this chapter we assume the function A x

0 on I, and divide by it in order to rewrite the differential equation in the standard form

y p x y q x y = f x  .

One reason this DE is called linear is that the "operator" L defined by

L y y p x y q x y 
satisfies the so-called linearity properties

     (1) L y1 y2 = L y1 L y2  
     (2) L c y = c L y , c  .

(Recall that the matrix multiplication function L x A x satisfies the analogous properties. Any time we
have have a transformation L satisfying (1),(2), we say it is a linear transformation. )

Exercise 2a)  Check the linearity properties (1),(2) for the differential operator L .

2b)  Use these properties to show that 

Theorem 1:   the solution space to the homogeneous second order linear DE

y p x y q x y = 0 

is a subspace.  Notice that this is the analogous proof we used earlier to show that the solution space to a 
homogeneous matrix equation is a subspace.



Exercise 3)  Find subspace of solutions to to homogeneous differential equation for y x  

y 2 y = 0 

on the x interval x .  Notice that the solution space is the span of two independent functions, 
so the solution space is 2-dimensional.  (It will turn out that the solution space to second order linear 
homogeneous DE's is always 2-dimensional.)   Hint:  This is really a first order DE for v = y . 



Theorem 2  (Existence-Uniqueness Theorem):  Let p x , q x , f x  be specified continuous functions on
the interval I , and let x0 I .  Then there is a unique solution y x  to the initial value problem

y p x y q x y = f x
y x0 = b0 
y x0 = b1 

and y x  exists and is twice continuously differentiable on the entire interval I .

Exercise 4)  Verify Theorem 2 for the interval I = ,  and the IVP
y 2 y = 0 

y 0 = b0 
y 0 = b1 



Unlike in the previous example, and unlike what was true for the first order linear differential equation

y p x y = q x  

there is not a clever integrating factor formula that will always work to find the general solution of the 
second order linear differential equation

y p x y q x y = f x .  

Rather, we will usually resort to vector space theory and algorithms based on clever guessing, as in the 
following example:

Exercise 5)  Consider the homogeneous linear DE for y x  
y 2 y 3 y = 0 

5a)  Find two exponential functions y1 x = er x , y2 x = e  x that solve this DE. 

5b)  Show that every IVP
y 2 y 3 y = 0 

y 0 = b0 
y 0 = b1 

can be solved with a unique linear combination y x = c1y1 x c2y2 x  , (where c1 , c2 depend on 
b0 , b1 ).

Then use the uniqueness theorem to deduce that y1, y2 span the solution space to this homogeneous 
differential equation.  Since these two functions are not constant multiples of each other, they are linearly 
independent and a basis for the 2-dimensional solution space!


