
Math 2250-004  Week 7 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes include material from 3.6, 4.1-4.3.

Tues Feb 20
3.6 Matrix inverses with determinants

Announcements: 

Warm-up Exercise:

 



On Friday we figured out what elementary row operations do to determinants, and used that reasoning to 
verify that a square matrix A is invertible exactly when det A 0:  

Theorem:  Let An n .  Then A 1 exists if and only if det A 0 .

proof:  We already know that A 1 exists if and only if the reduced row echelon form of A is the identity 
matrix.  Now, consider reducing A to its reduced row echelon form, and keep track of how the 
determinants of the corresponding matrices change:  As we do elementary row operations,

   if we swap rows, the sign of the determinant switches.

   if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

   if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, 
         A  = c1 A1 = c1c2 A2 = ... = c1c2 ... cN rref A  

where the nonzero ck 's arise from the three types of elementary row operations.  If rref A = I its 
determinant is 1, and  A = c1c2 ... cN 0 .  If rref A I then its bottom row is all zeroes and its 
determinant is zero, so  A = c1c2 ... cN 0 = 0 .  Thus A 0 if and only if rref A = I if and only if 

A 1 exists !



Today, we'll use the elementary row operation facts to understand the "magic" formulas for matrix 
inverses.  The formula uses the determinant of A along with the cofactor matrix of A.  To get started we 
first need to talk about matrix transposes:

Definition:  Let Bm n = bi j  .  Then the transpose of B,  denoted by BT is an n m matrix defined by

entryi j BT entryj i B = bj i .

The effect of this definition is to turn the columns of B into the rows of BT :
entryi colj B = bi j .

entryi rowj BT = entryj i BT = bi j .

And to turn the rows of B into the columns of BT:
entryj rowi B = bi j 

entryj coli BT = entryj i BT = bi j .

Exercise 1)  explore these properties with the identity

1 2 3

4 5 6

T

=

1 4

2 5

3 6
 .



Theorem:  Let An n, and denote its cofactor matrix by cof A = Ci j  , with Ci j = 1 i jMi j, and 
Mi j =  the determinant of the n 1 n 1  matrix obtained by deleting row i and column j from A.  
Define the adjoint matrix to be the transpose of the cofactor matrix:

Adj A cof A T 
Then, when A 1 exists it is given by the formula

A 1 =
1

det A
Adj A  .

Exercise 2)  Show that in the 2 2 case this reproduces the formula
a b

c d
=

1
ad bc

d b

c a
  .



Example)  Last week for the matrix  A =

1 2 1

0 3 1

2 2 1
 we worked out cof A  =

5 2 6

0 3 6

5 1 3
 :

cof A  = 

3 1

2 1

0 1

2 1

0 3

2 2

2 1

2 1

1 1

2 1

1 2

2 2

2 1

3 1

1 1

0 1

1 2

0 3

 

We take the transpose of the cofactor matrix to get the adjoint:

A =

1 2 1

0 3 1

2 2 1
       adj A = cof A T =

5 0 5

2 3 1

6 6 3
       det A = 15, 

so according the magic formula, 

A 1 =
1
15

 

5 0 5

2 3 1

6 6 3

check!



Let's understand why the magic worked.  In other words, let's understand conceptually why

A  adj A = 

det A 0 0

0 det A 0

0 0 det A

Exercise 3)  Continuing with our example, 
  
3a)  The 1, 1  entry of A Adj A  is 15 = 1 5 2 2 1 6  .  Explain why this is det A , 
expanded across the first row.  (Similar reasoning for the other diagonal entries.)

3b)  The 2, 1  entry of A Adj A  is 0 5 3 2 1 6 = 0.  Notice that you're using the same 
cofactors as in (2a).  What matrix, which is obtained from A by keeping two of the rows, but replacing a 
third one with one of those two, is this the determinant of?

3c)  The 3, 2  entry of A Adj A  is 2 0 2 3 1 6 = 0 .  What matrix (which uses two rows of A)
is this the determinant of?

from the previous page, for Exercise 3:

A =

1 2 1

0 3 1

2 2 1
       cof A  =

5 2 6

0 3 6

5 1 3
           adj A =

5 0 5

2 3 1

6 6 3
  



If you completely understand 3abc, then you have realized why 
A Adj A = det A I   

for every square matrix, and so also why

A 1 =
1

det A
Adj A  .

Precisely,
 entryi i A Adj A = rowi A coli Adj A = rowi A rowi cof A = det A ,

 expanded across the ith row.  

On the other hand, for i k, 
entryk i A Adj A = rowk A coli Adj A = rowk A rowi cof A  .

This last dot produce is zero because it is the determinant of a matrix made from A by replacing the ith row 
with the kth row, expanding across the ith row, and whenever two rows are equal, the determinant of a 
matrix is zero:

  ith row position  

   
1
   

 
2 

  

  
k
    

   
k
    

   
n
   

.



There's a related formula for solving for individual components of x when A x = b has a unique solution (
x = A 1b ).  This can be useful if you only need one or two components of the solution vector, rather than 
all of it:

Cramer's Rule:  Let x solve A x = b , for invertible A.  Then

xk =
det Ak

det A
 

where Ak is the matrix obtained from A by replacing the kth column with b.  

proof:  Since x = A 1b  the kth component is given by
xk = entryk A 1b  

= entryk
1
A

Adj A b   

=
1
A

rowk Adj A b  

=
1
A

colk cof A b .

Notice that colk cof A b is the determinant of the matrix obtained from A by replacing the kth column 

by b, where we've computed that determinant by expanding down the kth column! This proves the result.  
(See our text for another way of justifying Cramer's rule.)

Exercise 4)  Solve 
5 1

4 1

x

y
=

7

2
 .

4a)  With Cramer's rule
4b) With A 1, using the adjoint formula.



Wed Feb 21
4.1-4.2  The vector spaces 2, 3,  n .

Announcements: 

Warm-up Exercise:



4.1-4.2  The vector space m and its subspaces; concepts related to "linear combinations of vectors."

Geometric interpretation of vectors     

The space n may be thought of in two equivalent ways.  In both cases, n consists of all possible 
n tuples of numbers:

(i)  We can think of those n tuples as representing points, as we're used to doing for n = 1, 2, 3.  In this 
case we can write

n = x1, x2,..., xn , s.t. x1, x2,..., xn .

(ii) We can think of those n tuples as representing vectors that we can add and scalar multiply.  In this 
case we can write

n = 

x
1

x
2

:
x
n

,  s.t. x
1
, x

2
,..., x

n
 .

Since algebraic vectors (as above) can be used to measure geometric displacement, one can identify the two
models of n as sets by identifying each point x1, x2,...xn  in the first model with the displacement vector

x = x1, x2,...xm
T from the origin to that point, in the second model, i.e. the "position vector" of the point.  



One of the key themes of Chapter 4 is the idea of linear combinations.  These have an algebraic definition 
as well as a geometric interpretation as combinations of displacements, as we will review in our first few 
exercises.

Definition:  If we have a collection of n vectors v1, v2,  ... vn  in m, then any vector v m that can be 
expressed as a sum of scalar multiples of these vectors is called a linear combination of them.  In other 
words, if we can write

v = c1v1 c2v2  ... cnvn ,
then v is a linear combination of v1, v2,  ... vn .  The scalars c1, c2,..., cn are called the weights or  linear 
combination coefficients.

Example  You've probably seen linear combinations in previous math/physics classes.  For example you 
might have expressed the position vector r of a point x, y, z  as a linear combination

r = x i y j z k 

where i, j, k  represent the unit displacements in the   Since we can express these displacements using 
Math 2250 notation as

i = 

1

0

0
,  j =

0

1

0
,  k =

0

0

1
we have

x i y j z k = x

1

0

0
y

0

1

0
z

0

0

1
 =

x

y

z
.



Remarks:  When we had free parameters in our explicit solutions to linear systems of equations A x = b 
back in Chapter 3, we sometimes rewrote the explicit solutions using linear combinations, where the 
scalars were the free parameters (which we often labeled with letters that were t, t4, t3 etc., rather than with
"c's").  When we return to differential equations in Chapter 5 -studying higher order differential equations -
then the explicit solutions will also be expressed using "linear combinations", just as we did in Chapters 1
-2, where we used the letter "C" for the single free parameter in first order differential equation solutions:

Definition:  If we have a collection  y1, y2, ... , yn   of n functions y x  defined on a common interval I , 
then any function that can be expressed as a sum of scalar multiples of these functions is called a linear 
combination of them.  In other words, if we can write

y = c1y1 c2y2  ... cnyn ,
then y is a linear combination of y1, y2, ... , yn .

The reason that the same words are used to describe what look like two quite different settings, is that there
is a common fabric of mathematics (called vector space theory) that underlies both situations.  We shall be 
exploring these concepts over the next several lectures, using a lot of the matrix algebra theory we've just 
developed in Chapter 3.  This vector space theory will tie in directly to our study of differential equations, 
in Chapter 5 and subsequent chapters.



Exercise 1)  Let  u =
1
1  and v =

1
3  . 

1a)  Plot the points 1, 1  and 1, 3 , which have position vectors u, v.    Draw these position vectors as 
arrows beginning at the origin and ending at the corresponding points.  

1b)  Compute  u v and then plot the point for which this is the position vector.   Note that the algebraic 
operation of vector addition corresponds to the geometric process of composing horizontal and vertical 
displacements.

1c)   Compute u and 2 v,  u 2 v  and plot the corresponding points for which these are the position 
vectors.

1d)  Plot the parametric line whose points are the endpoints of the position vectors u t v, t .   
How else might you have expressed this parametric line in multivariable calculus class?   What is the 
implicit equation of this line?



Exercise 2)  Can you get to the point 2, 8 2 , from the origin 0, 0  , by moving only in the (±) 

directions of u =
1

1
 and v =

1

3
 ?  Algebraically, this means we want to solve the linear combination

problem

x1

1

1
x2

1

3
=

2

8
 .

2a)  Superimpose a grid related to the displacement vectors u, v onto the graph paper below, and, recalling 
that vector addition yields net displacement, and scalar multiplication yields scaled displacement, try to 
approximately solve the linear combination problem above, geometrically.

2b)  Rewrite the linear combination problem as a linear system and solve it exactly, algebraically!!



2c)  Can you get to any point x, y  in 2, starting at 0, 0  and moving only in directions parallel to u, v ?

 Argue geometrically and algebraically.  How many ways are there to express 
x

y
 as a linear combination

of u and v ?

Definition  The span of a collection of vectors, written as span v1, v2, ...  vn  , is the collection of all linear
combinations of those vectors.

Examples:  We showed in 2c that span u, v = 2.   

Remark:  The mathematical meaning of the word span is related to the English meaning - as in "wing 
span" or "span of a bridge", but it's also different.  The span of a collection of vectors goes on and on and 
does not "stop" at the vector or associated endpoint:



Exercise 3)  Consider the two vectors v1 = 1, 0, 0 T, v2 = 0, 1, 2 T 3.
3a)  Sketch these two vectors as position vectors in 3, using the axes below.

3b)  What geometric object is span v1  ?  (Remember, we are identifying position vectors with their 
endpoints.)  Sketch a portion of this object onto your picture below.  Remember though, the "span" 
continues beyond whatever portion you can draw.

3c)  What geometric object is span v1, v2  ?  Sketch a portion of this object onto your picture below.  
Remember though, the "span" continues beyond whatever portion you can draw.



3d)  What implicit equation must vectors b1, b2, b3
T satisfy in order to be in  span v1, v2 ?  Hint: For 

what b1, b2, b3
T can you solve the system

c1

1

0

0
c2

0

1

2
=

b1

b2

b3

  

for c1, c2 ?  Write this an augmented matrix problem and use row operations to reduce it, to see when you 
get a consistent system for c1, c2.



Fri Feb 23
4.1-4.3  The vector spaces 2, 3,  n .

Announcements: 

Warm-up Exercise:



On Wednesdy we interpreted linear combinations geometrically.  And, we noticed that to answer natural 
questions we ended up using matrix theory from Chapter 3  This is because

Exercise 1)  By carefully expanding the linear combination below, check than in m , the linear 
combination

c1

a11

a21

:

am1

c2

a12

a22

:

am2

... cn

a1 n

a2 n

:

amn

=

                                               

                                                                          

                                                               

 

= 

                                               

                                                                         

                                                               
 

is always just the matrix times vector product
a11 a12 ... a1n

a21 a22 ... a2n

: : : :

am1 am2 ... amn

c1

c2

:

cn

.

Thus linear combination problems in m can usually be answered using the linear system and matrix 
techniques we've just been studying in Chapter 3.  This will be the main theme of Chapter 4. 



Exercise 3)  Consider the two vectors v1 = 1, 0, 0 T, v2 = 0, 1, 2 T 3.
3a)  Sketch these two vectors as position vectors in 3, using the axes below.

3b)  What geometric object is span v1  ?  (Remember, we are identifying position vectors with their 
endpoints.)  Sketch a portion of this object onto your picture below.  Remember though, the "span" 
continues beyond whatever portion you can draw.

3c)  What geometric object is span v1, v2  ?  Sketch a portion of this object onto your picture below.  
Remember though, the "span" continues beyond whatever portion you can draw.



3d)  What implicit equation must vectors b1, b2, b3
T satisfy in order to be in  span v1, v2 ?  Hint: For 

what b1, b2, b3
T can you solve the system

c1

1

0

0
c2

0

1

2
=

b1

b2

b3

  

for c1, c2 ?  Write this an augmented matrix problem and use row operations to reduce it, to see when you 
get a consistent system for c1, c2.



When we are discussing the span of a collection of vectors  v1, v2,  ... vn  we would like to know that we 
are being efficient in describing this collection, and not wasting any free parameters because of 
redundancies.  This has to do with the concept of "linear independence":

Definition: 
a) The vectors  v1, v2,  ... vn are linearly independent if no one of the vectors is a linear combination of 
(some) of the other vectors. The logically equivalent concise way to say this is that the only way 0 can be 
expressed as a linear combination of these vectors,

c1v1 c2v2  ... cnvn = 0 ,
is for all the weights c1 = c2 =... = cn = 0 .

b)  v1, v2,  ... vn are linearly dependent if at least one of these vectors is a linear combination of (some) of 
the other vectors.  The concise way to say this is that there is some way to write 0 as a linear combination 
of these vectors

c1v1 c2v2  ... cnvn = 0
where not all of the cj = 0 .  (We call such an equation a linear dependency.  Note that if we have any such 
linear dependency, then any vj with cj 0 is a linear combination of the remaining vk with k j .  We say
that such a vj is linearly dependent on the remaining vk .)

Note:  Two non-zero vectors are linearly independent precisely when they are not multiples of each other.  
For more than two vectors the situation is more complicated.



Example (Refer to Exercise 2 Wednesday):  

The vectors v1 =
1

1
 , v2 =

1

3
, v3 =

2

8
 in 2 are linearly dependent because, as we showed on 

Tuesday and as we can quickly recheck,

3.5
1

1
1.5

1

3
=

2

8
. 

We can also write this linear dependency as

3.5v1 1.5v2 v3 = 0  
(or any non-zero multiple of that equation.)

Exercise 2) Are the vectors v1 =
1

1
 , v2 =

1

3
 linearly independent?  How about v1 =

1

1
 , 

v3 =
2

8
 ?



Exercise 3)  For linearly independent vectors  v1, v2,  ... vn, every vector v in their span can be written as 
v = d1v1 d2v2  ... dnvn uniquely, i.e. for exactly one choice of linear combination coefficients d1, d2,

...dn .  This is not true if vectors are dependent.  Explain these facts.  (You can illustrate these facts 
with the vectors in Exercise 2.)

Exercise 5)  (Recall Exercise 3 in Wednesday's notes): 
5a)  Are the vectors 

v
1

=

1
0
0

,  v
2

=

0
1
2

  

linearly independent?



5b)  Show that the vectors

v
1

=

1
0
0

,  v
2

=

0
1
2

, v
3

=

3
4
8

    

are linearly dependent (even though no two of them are scalar multiples of each other).  What does this 
mean geometrically about the span of these three vectors?
Hint:  You might find this computation useful: 

1 0 3

0 1 4

0 2 8
             reduces to       

1 0 3

0 1 4

0 0 0

Exercise 6)  Are the vectors

v
1

=

1
0
2

,  v
2

=

0
1
2

, w
3

=

1
1
1

 

linearly independent?  What is their span?  Hint:
1 0 1

0 1 1

2 2 1

            reduces to            

1 0 0

0 1 0

0 0 1


