Math 2250-004 Week 6 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes include material from 3.5-3.6.
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Matrix inverses: A square matrix 4 is invertible if there is a
o AB=BA=1,
where / is the n X n identity matrix. In this case we call B the inverge of 4, and write B = 4 -l

trix B so that
nxn

Remark: A matrix 4 can have at most one inverse, because if we hayve two candidates B, C with

AB=BA=1 andalso AC=CAxI

then
- (BA)C=IC=C
* B(AC)=BI=B

so since the associative property (B4)C = B(AC) is true, it must be that
B=C.

1 2
Exercise 1a) Verify that for 4 =

AR = [‘32 [ } | RA=T 4w!

the inverse matrix is

Inverse matrices are very useful in solving algebra problems. For example - ‘l;
2
- — -1
Theorem: If A4 ! exists then the only solution tW =) /-\ IL\ 72) - P\ L_)
H = 0L
Exercise 1b) Use the theorem and A Vin la, to write down the solution to e tem I o @,‘ 1;’
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Exercise 2a) Use matrix algebra to verify why the Theorem on the previous page is true. Notice that the

correct formulaisx=A4 ! b andnotx=5b A7 (this second product can't even be computed because the
dimensions don't match up!). —
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2b) Assuming A4 is a square matrix with an inverse A4 ! , and that the matrices in the equation below have
dimensions which make for meaningful equation, solve for X in terms of the other matrices:

X4+ C=B
—-C= -C

XA = B-C

X AN =

X T
X

3-O)A"!
Q;-c)ﬂ"
(B-c)A~!

1

NOTE When A" exists for an n x n matrix A, every linear system 4 x = b has a unique solution (given

by the formulax =4 ! b). That means that the reduced row echelon form of 4 must be the identity matrix
in these cases! (Because if 4 doesn't reduce to the identity then there will be fewer than n pivots, so many
systems 4 x = b will be inconsistent and the ones that are consistent will have free parameters in the
solutions.)
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But where did that formula for 4™ come from?
Answer: Consider 4™ as an unknown matrix, A= X. We want
AX=1.
We can break this matrix equation down by the columns of X. In the two by two case we get:

110
4 |col, (X)|col, (X) |5 ol1
To be more concrete, in this example we may write the unknown columns as
| i
col (X) = ol col, (X) =
2 3
Then we want to solve the two systems
1 2N 1 1 2 (| M 0
3 4| x, 0 34| 1
We can solve for both of these ery columnsa e, as wevedone before when we had different right
hand sides, with a double-augmented matrix
Exercise 3: Reduce the double augmented matrix i
1 2(1]0
34(0(1
to find the two columns of 4" for the previous example.
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Exercise 4: Will this always work? Can you find A for

A=

1 51

25012

2 71

Try to solve A X = I for the mystery matrix, and do it column by column. In other words, if we write

Solve

1 51
250
2 71

X bel
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155
Exercise 5) Will this always work? Try to find B~ forB:=| 2 5 0
T (274

Well, if we set up the 3 X 6 matrix where we have augmented B with the identity matrix, and then reduce,
this is what happens:

[ 7 5

IO-SlOZ-Z
155|100

1 1

250/010 reduces to 01 2 O-E E
27 4/0 0 1

3 5

00 O0O|l1 — -—

4 4

What happened, and what does this mean?
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Theorem: Letd4 beasquare matrix. Then A has an inverse matrix if and only if its reduced row

X
echelon form is the identity. In this case the algorithm illustrated on the previous page will always yield
the inverse matrix.

explanation: By the previous theorem, when A_lexists, the solutions to linear systems
Ax=b

are unique (x=4 'p ) So, the reduced row echelon form of 4 must be the identity / _  in these cases.

In the case that 4 does reduce to /, we search for 4 ~! as the solution matrix X to the matrix equation
AX=1
1.e.

4| col (X) | coly(X) | ... |col (X) |=

0
1
0
| 0

- o o O

S O o =

Because A reduces to the identity matrix, we may solve for X column by column as in the examples we just
worked, by using a chain of elementary row operations:

[A]1]=—=—>—>—=[]]|B],

and deduce that the columns of X are exactly the columns of B, i.e. X= B. Thus we know that

AB=1.
To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = 4. But we can actually
verify this fact by reordering the columns of [/ | B] to read [ B | /] and then reversing each of the
elementary row operations in the first computation, in reverse order, i.e. create the chain

[B]1]>—=———[l]4].

So B A =TI also holds! (This is one of those rare times when matrix multiplication actually is commuative.)

To summarize: 1f 47" exists, then solutions x to 4 x = b always exist and are unique, so the reduced row

echelon form of 4 is the identity. If the reduced row echelon form of 4 is the identity, then 47! exists,
because we have an algorithm to find it. That's exactly what the Theorem claims.




There's a nice formula for the inverses of 2 x 2 matrices, and it turns out this formula will lead to the next

text section 3.6 on determinants:
-1

Theorem: j g exists if and only if the determinant D —f [gg is non-zero. And in
this case,

a b 1 [@ @

c d " ad—be @ @

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms. This formula should be memorized.)

Exercise 6a) Check that this formula for the inverse wofks, for D # 0. (We could have derived it with
elementary row operations but it's easy to check since we've been handed the formula.)

@} [* 3 4] “C"MJR:,
0 SRR =
A [3 4 -2 |3 @
dat (A= 4 —3%2 = -2 = [-2
)

’5/2

6b) Even with systems of two equations in two unknowns, unless they come from very special problems
the algebra is likely to be messier than you might expect (without the formula above). Use the magic

formula to solve the system 4
3x+7y=5 Q__-HMS wis | w0 4j
Sx+4y=8. WBRUtn)-

D
- Alg ba. ( »D
= 4t (A)
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a b

Remark: For a2 x 2 matrix g0 the reduced row echelon form will be the identity if and only if the
C

two rows are not multiples of each other: And if a, b are both non-zero then saying that the second row is
. . ) c d ) )

6 not a multiple of the first row is the same as saying that — + " (the ratios of the second row entries to

a

the corresponding first row entries). Cross multiplying we see this is the same as ad # bc, i.e.

ad — bc # 0. The "determinant not equal to zero" condition is also the correct condition for the rows not

being multiples, even if one or both of @, b are zero. So this is the condition that 4 reduces to the identity

and has an inverse matrix. knowing the inverse matrix exists.

Remark: Determinants are defined for square matrices 4, and the resulting number determines whether

or not the inverse matrices exist, (i.e. whether the reduced row echelon form of 4 is the identity matrix).

® And, when n > 2 there are analogous (but more complicated) magic formulas for the inverse matrices
when the inverses exist, that generalize the one you're memorizing for n = 2. This is section 3.6 material
that we'll discuss carefully tomorrow, Wednesday, and next week Monday.
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z -1
23 - 1
o |
@ Determinants are scalars defined for square matrices 4~ They always determine whether or not th
inverse matrix 4~ exists, (i.e. whether the reduced row echelon form of A4 is the identity matrix): In fact,
the determinant of 4 is non-zero if and only if A" exists. The determinant of a 1 x 1 matrix [all ] is

defined to be the number a . ; determinants of 2 x 2 matrices are defined as in yesterday's notes; and in

11’
general determinants for n x n matrices are defined recursively, in terms of determinants of
(n — 1) x (n — 1) submatrices:

Definition: Let A = [alj ] Then the determinant of 4, written det r |A| is defined by

nxn actor
% Uz T A
det(A a
< ]

Here M| . 1s the determinant of the (n — 1 ) (n— l matrix obtained from 4 by deleting the first row
and the] column, and C| 1s simply (- 1)1 J”Mlj.

More generally, the determinant of the (n — 1) x (n — 1) matrix obtained by deleting row i and column j
. Cng N N IV, ..
from 4 is called the i j Minor All.j of 4, and Cl.j = (-1) Ml.j is called the i j Cofactor of 4 .

Exercise 1 Check that the messy looking definition above gives the same answer we talked about

yesterday in the 2 x 2 case, namely l
= da,,a - .

\&) 142

IR \A\"" Q \(-n A, + unD Hl?.
q - +}. l

=, 1 % * q‘{(-ﬂy
= a4%, — Q%




There's a nice formula for the inverses of 2 x 2 matrices, and it turns out this formula will lead to the next

text section 3.6 on determinants:
-1

Theorem: j g exists if and only if the determinant D —f [gg is non-zero. And in
this case,

a b 1 [@@

c d " ad—be @ @

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms. This formula should be memorized.)

Exercise 6a) Check that this formula for the inverse wofks, for D # 0. (We could have derived it with
elementary row operations but it's easy to check since we've been handed the formula.)

@} [* 3 4] “C"MJR:,
f SRR U=
A [3 4 -2 |3 @
dt (A= 4 —3%2 =-2 = [-2
)

’5/2

6b) Even with systems of two equations in two unknowns, unless they come from very special problems
the algebra is likely to be messier than you might expect (without the formula above). Use the magic

formula to solve the system 4
3x+7y=5 Q__-HMS wis | w0 4j
Sx+4y=8. WBRMUtnD-

D
- Alg ba. ( »D
= 4t (A)
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from the last page, for our convenience:

Definition: Letd4 = [al.j] . Then the determinant of 4, written det(A) or |4] , is defined by

Xn
n

n

1 +j

det(A) = _Elalj(—l) JMU: Elaljclj.
J= J=

Here M| ; is the determinant of the (n — 1) X (n» — 1) matrix obtained from 4 by deleting the first row

and thefh column, and Clj is simply (-1 )1 +jM1j .

Exercise 2 Work out the expanded formula for the determinant of a 3 x 3 matrix. It's not worth
memorizing (as opposed to the recursive formula above), but it's good practice to write out at least once,
and we might point to it later.
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Theorem: (proofis in text appendix) det(A4) can be computed by expanding across any row, say row i:
n

det(d) = Qa, (-1) M, = Da, C,  &—aeross vav;(A)
i=1

j=1

or by expanding down any column, say column j:
n
— down el )
det(A Z l JrJMJ. = ZaijCij . 4 $ A
= i=1

1 2 -1
Exercise 3a) Let4:=| 0 3 1 |. Compute det(A4) using the definition. (On the next page we'll use

2 -2 1
other rows and columns to do the computation.) + - +

- 4 =
-t 2 |

+ (=0 \
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=AYt =



From previous page,

I 2 -1
A=10 3 1
2 -2 1
5 2 -6
3b) Verify that the matrix of all the cofactors of 4 is given by [Cl.j] =0 3 6 |. Then expand
5 -1 3

det(A) down various columns and rows using the a; factors and Cl.j cofactors. Verify that you always

get the same value for det(A4), as the Theorem on the previous page guarantees. Notice that in each case
you are taking the dot product of a row (or column) of 4 with the corresponding row (or column) of the
cofactor matrix.

4 -t +]3% _lo v +° %
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=(S 2 -6
9 3 6
5 -\ 3
£l
/2] 516D
A& 0 3 1 [Cij_ 0 3
2 k2 1 Y
vrow; (A)  vor, ( eok (A)
(AN = Lg ¢1q + CN6) = S+4+6=19
ed, (AY- e, (af (A

IAV= 4 +1x2= 18,
mddy rews 2 LAL= 0 +q &} = IS



3c) What happens if you take dot products between a row of 4 and a different row of [Cl.j] ? A column
of 4 and a different column of [Cl.j] ? The answer may seem magic. We'll come back to this example

when we talk about the magic formula for the inverses of 3 x 3 (or n X n) invertible matrices.

1 2 1 5{2 -6 |
A=10 3|1 [C,1=[0 ]3] 6
_2—2\1/ <SEE

row, (AY - v (e (A = § -2-3 =0

et Al re,{vv%'



Exercis % 4) Compute the following determinants by being clever about which rows or columns to use:

1138 106 3 10 0 O
0|2 92 -7 2, 0 +— 4+ =
42) : | " 0 -4 -4
010 3 45 0.476 88 3 0 MR
@ 0 0 -2 1 22 33 -2

4o ). \Al= 1] Ol; :;)g "o 00

0o =
= (2““_‘1\ -0 +07
=t-2 (300 -0)

= ["2o7>- (»L) . = ‘Fwdm‘l Jb MEMQ%',"M
C“‘P‘Vf 'l—hr:““zw“lar\?

Exercise 5) Explain why it is always true that for an upper triangular matrix (as in 2a), or for a lower
triangular matrix (as in 2b), the determinant is always just the product of the diagonal entries.
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The effective way to compute determinants for larger-sized matrices without lots of zeroes is to not use the
definition, but rather to use the following facts, which track how elementary row operations affect
determinants:
+ (la) Swapping any two rows changes the sign of the determinant.

proof: This is clear for 2 x 2 matrices, since

a b c d

a b

=ad — bc, =cb—ad.

c d

For 3 x 3 determinants, expand across the row not being swapped, and use

the 2 x 2 swap property to deduce the result. Prove the general result by induction:
once it's true for n X n matrices you can prove it for any (n + 1) x (n + 1) matrix,
by expanding across a row that wasn't swapped, and applying the n X n result.

Swap rows 1 43¢

4,(‘,,““( uw\;uml’pl.oL wa.'flwk
O\ ~0SS 7_"‘“ o

(O\u A, Ay _[da 4 . o A 9 S e
qul Qa %s = %’ L‘p 3 n' o q} o

3 3
Qg, Qgq A3

what keppms .'-[ wt smzz l"'&?,"( W% oo\.'sfvw\q

ma’\m‘xl 0\\"'{‘0 r-!;ﬁ\l\‘\' S 7.
ams  riws Swmp - X2 ""'“l"‘“b

So by fect f 221 olats, Hae sign -

TR Y

He h'jk'l’ gvele L&lﬂf} Sl'o(l.) w

(1b) Thus, if two rows in a matrix are the same, the determinant of the matrix must be zero:
on the one hand, swapping those two rows leaves the matrix and its determinant unchanged;
®  on the other hand, by (1a) the determinant changes its sign. The only way this is possible
is if the determinant is zero.



(2a) If you factor a constant out of a row, then you factor the same constant out of the determinant.
Precisely, using R_for " row of 4 , and writing ® = ¢ R”*
1 l l

R R R
1 1 1
R R R
2 2 2
. = : :C :
—| % c R * R *
1 1 1
R
n n n

proof: expand across the i row, noting that the corresponding cofactors don't

change, since they're computed by deleting the " row to get the corresponding minors:
n n n
det(A) = Za. C. .= Zc a. C..= cZa.*.C. , = cdet(A* ).
T -

by v

? 2 6 (2
2 L'\-;_ 2 '7'\ :3'-‘ \':\'2.
| 2 13 4 \2 L3
b-4 =1 ’—.,:‘-1 1-2)=2 N

® o

(2b) Combining (2a) with (1b), we see that if one row in A is a scalar multiple
of another, then det(4) =0 .



. (3) If you replace row i of 4, ® by its sum with a multiple of another row, say mk then the

determinant is unchanged! Expand across the " row:

S

(@ /\ .
2 2
n n

n
S ‘Qk =Z(ai,+cak ,)Ci.=2ai,Ci,+cZak ,Ci,=det(A) +c ‘Wk =det(A) + 0 .
c ’m+cm j=1 J J J j=1 J j=1 J U 2
\otk‘\“”‘ i k — k
R R
n n

Remark: The analogous properties hold for corresponding "elementary column operations". In fact, the
proofs are almost identical, except you use column expansions.



1 2 -1

Exercise 1) Recompute | 0 3 1 | from yesterday (using row and column expansions we always got
2 -2 1

an answer of 15 then.) This time use elementary row operations (and/or elementary column operations).

lr:)\—l 2
Il =12
2111 1 0
Exercise 2) Compute Slol 11 =-0+\ ]2 -o *+ 0
-\ -2 |
-1@-2 |
= l I =1 2
(@) 3 -.3 -ZR\*EQ_AR'L

=0 dwo Cows ot md'l\'rlt,!



Theorem: Let 4 . Then A" exists if and only if det(A) # 0.

nXxn

proof: We already know that 4 ! exists if and only if the reduced row echelon form of 4 is the identity
matrix. Now, consider reducing 4 to its reduced row echelon form, and keep track of how the
determinants of the corresponding matrices change: As we do elementary row operations,

« if we swap rows, the sign of the determinant switches.
« if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

« if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, ¢ ‘ ’ ¢

|A|=cl‘A1| 2|A ‘ =cc, ... c rref(A)|

where the nonzero ¢, 's arise from the three types of elementary row operations. If rref(4) = Iits

determinantis 1, and | 4| =cc, ...c,, # 0. If rref (4) # [ then its bottom row is all zeroes and its
—_—

determinant is zero, so | 4 | = ¢ ¢, ... ¢, (0) = 0. Thus |4] # 0 if and only if rref (4) =/ if and only if

A" exists !

Remark: Using the same ideas as above, you can show that det(4 B) = det(A)det(B). This is an
important identity that gets used, for example, in multivariable change of variables formulas for integration,
using the Jacobian matrix. (It is not true that det(4 + B) = det(A) + det(B) .) Here's how to show
det(A B) = det(A)det(B): The key point is that if you do an elementary row operation to AB , that's the
same as doing the elementary row operation to 4 , and then multiplying by B. With that in mind, if you do
exactly the same elementary row operations as you did for 4 in the theorem above, you get

| A B[ =48] = €16 AyB = = €16y ey |rref (A) B,

If rref (4) =1, then from the theorem above, | 4 | = ¢,c, ... ¢,;, and we deduce |4 B| = |4]|B|. If

rref (A) # I, then its bottom row is zeroes, and so is the bottom row of rref (A)B . Thus |4 B| =0 and
also |A||B] =0



There is a "magic" formula for the inverse of square matrices 4 (called the "adjoint formula") that uses the
determinant of 4 along with the cofactor matrix of 4. We'll talk about the magic formula on Monday next
week, after the midterm.



Exam notes:

The exam is this Friday February 16, from 10:40-11:40 a.m. Note that it will start 5 minutes before the
official start time for this class, and end 5 minutes afterwards, so you should have one hour to work on the
exam. Get to class early, and bring your University I.D. card, which we might ask you to show if we
don't recognize you from sections or lecture.

2.0-2.3+2.y  wt 25,2.6

This exam will cover textbook material from 1.1-1.5, 2.1-2.4, 3.1-3.5. The exam is closed book and
closed note. You may use a scientific (but not a graphing) calculator, although symbolic answers are
accepted for all problems, so no calculator is really needed. (Using a graphing calculator which can do
matrix computations for example, is grounds for receiving grade of 0 on your exam. So please ask before
the exam if you're unsure about your calculator. And of course, your cell phones must be put away.)

I recommend trying to study by organizing the conceptual and computational framework of the course so
far. Only then, test yourself by making sure you can explain the concepts and do typical problems which
illustrate them. The class notes and text should have explanations for the concepts, along with worked
examples. Old homework assignments and quizzes are also a good source of problems. It could be
helpful to look at quizzes/exams from my previous Math 2250 classes, which go back several years from
the link

http://www.math.utah.edu/~korevaar/oldclasses .html.
Y our lab meetings tomorrow will be exam review sessions.




Chapter 3:

3a) Can you recognize an algebraic linear system of equations?
¢ QX +ﬁ.zx.tl—- = L( o
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3b) Can you interpret the solution set geometrically when there are 2 or three unknowns?
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3¢) Can you use Gaussian elimination to compute reduced row echelon form for matrices? Can you
apply this algorithm to augmented matrices to solve linear systemis 7

you bebe b atle I

3d) What does the shape of the reduced row echelon form of a matrix A tell you about the possible
solution sets to Ax = b (perhaps depending, and perhaps not depending on b)? Focus especially on
whether each row of the reduced matrix has a pivot or not; and on whether each column of the reduced

matrix has a pivot or not. ‘.{ tadn o 1 rre£(A) has a ?\'w“', 5
Y o~conm «lw&‘y s ot Ax=b

|~( Qaed. il . rb ru-(-‘(A) las a ?w‘w"
Hurn  solubing 'HM'l' exist avguwc»\uL

(bt canst wo -Gﬁ%rwlm&.]gs) )

3e) What properties do (and do not) hold for the matrix algebra of addition, scalar multiplication, and
matrix multiplication?
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3f) What is the matrix inverse, A K for a square matrix A ? Does every square matrix have an inverse?
How can you tell whether or not a matrix has an inverse, using reduced row echelon form?  What's the

row operations way of finding A ! \hen it exists? Can you use matrix algebra to solve matrix equations
for unknown vectors x or matrices X, possibly using matrix inverses and other algebra manipulations?
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Chapters 1-2:

la) Whatis a differential equation? What is its order? What is an initial value problem, for a first or
second order DE?

1b) How do you check whether a function solves a differential equation? An initial value problem?

Ic) What is the connection between a first order differential equation and a slope field for that differential
equation? The connection between an IVP and the slope field?
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value? Why? Do you expect uniqueness? What can cause solutions to not exist beyond a certain input
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le) Whatis Euler's numerical method for approximating solutions to first order IVP's, and how does it

2
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1f) What's an autonomous differential equation? What's an equilibrium solution to an autonomous
differential equation? What is a phase diagram for an autonomous first order DE, and how do you
construct one? How does a phase diagram help you understand stability questions for equilibria? What
does the phase diagram for an autonomous first order DE have to do with the slope field?
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1g) Can you recognize the first order differential equations for which we've studied solution algorithms,
even if the DE is not automatically given to you pre-set up for that algorithm? Do you know the
algorithms for solving these particular first order DE's?
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2) Can you convert a description of a dynamical system in terms of rates of change, or a geometric
configuration in terms of slopes, into a differential equation? What are the models we've studied carefully
in Chapters 1-2? What sorts of DE's and IVP's arise? Can you solve these basic application DE's, once
you've set up the model as a differential equation and/or IVP?
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