
Math 2250-004  Week 6 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes include material from 3.5-3.6.

Mon Feb 12
          3.5 matrix inverses  

Announcements: 

Warm-up Exercise:

 



Matrix inverses:  A square matrix An n is invertible if there is a matrix Bn n so that
AB = BA = I ,

where I is the n n identity matrix.  In this case we call B the inverse of A, and write B = A 1 .

Remark:   A matrix A can have at most one inverse, because if we have two candidates B, C with

AB = BA = I    and also    AC = CA = I 
then

BA C = IC = C  
B AC = BI = B 

so since the associative property BA C = B AC  is true, it must be that
B = C.  

Exercise 1a)  Verify that for A =
1 2

3 4
 the inverse matrix is B =

2 1

3
2

1
2

 .

Inverse matrices are very useful in solving algebra problems.  For example

Theorem:  If A 1 exists then the only solution to Ax = b is x = A 1b .

Exercise 1b)  Use the theorem and A 1 in 1a, to write down the solution to the system
x 2 y = 5  

3 x 4 y = 6      



Exercise 2a)   Use matrix algebra to verify why the Theorem on the previous page is true.  Notice that the 
correct formula is x = A 1b  and not x = b A 1  (this second product can't even be computed because the 
dimensions don't match up!).

2b)  Assuming A is a square matrix with an inverse A 1, and that the matrices in the equation below have 
dimensions which make for meaningful equation, solve for X in terms of the other matrices:

XA C = B

NOTE  When A 1 exists for an n n matrix A,  every linear system A x = b   has a unique solution (given 
by the formula x = A 1b ).   That means that the reduced row echelon form of A must be the identity matrix
in these cases!  (Because if A doesn't reduce to the identity then there will be fewer than n pivots, so many 
systems A x = b will be inconsistent and the ones that are consistent will have free parameters in the 
solutions.)



But where did that formula for A 1 come from?
Answer:  Consider A 1 as an unknown matrix, A 1 = X .  We want

A X = I .
We can break this matrix equation down by the columns of X. In the two by two case we get:

A col1 X col2 X =
1

0

0

1
 .

To be more concrete, in this example we may write the unknown columns as 

col1 X =
x1

x2
,    col2 X =

y1

y2
.

Then we want to solve the two systems

1 2

3 4

x1

x2
=

1

0
,   

1 2

3 4

y1

y2
 =

0

1
  .

We can solve for both of these mystery columns at once, as we've done before when we had different right
hand sides, with a double-augmented matrix

Exercise 3:  Reduce the double augmented matrix
1 2

3 4

1

0

0

1
 

to find the two columns of A 1 for the previous example.



Exercise 4:  Will this always work?  Can you find A 1 for 

A :=

1 5 1

2 5 0

2 7 1
 ?

Try to solve A X = I for the mystery matrix, and do it column by column.  In other words, if we write

col1 X =

x1

x2

x3

         col2 X =

y1

y2

y3

             col3 X =

z1

z2

z3

Solve

1 5 1

2 5 0

2 7 1

x1

x2

x3

=

1

0

0
           

1 5 1

2 5 0

2 7 1

y1

y2

y3

=

0

1

0
               

1 5 1

2 5 0

2 7 1

z1

z2

z3

=

0

0

1
  

with a triple-augmented matrix reduction!



Exercise 5)  Will this always work?  Try to find B 1 for B :=

1 5 5

2 5 0

2 7 4
 .

Well, if we set up the 3 6 matrix where we have augmented B with the identity matrix, and then reduce, 
this is what happens:

1 5 5 1 0 0

2 5 0 0 1 0

2 7 4 0 0 1
      reduces to   

1 0 5 0
7
4

5
4

0 1 2 0
1
2

1
2

0 0 0 1
3
4

5
4

What happened, and what does this mean?



Theorem:  Let An n be a square matrix.  Then A has an inverse matrix if and only if its reduced row 
echelon form is the identity.  In this case the algorithm illustrated on the previous page will always yield 
the inverse matrix.

explanation:  By the previous theorem, when A 1exists, the solutions to linear systems
A x = b 

are unique (x = A 1b .  So, the reduced row echelon form of A must be the identity In n in these cases. 

In the case that A does reduce to I, we search for A 1 as the solution matrix X to the matrix equation
A X = I 

i.e.

A col1 X col2 X .... coln X =

1

0

0

0

0

1

0

0

....

0

0

0

1

   

Because A reduces to the identity matrix, we may solve for X column by column as in the examples we just
worked, by using a chain of elementary row operations:

 A  I I  B ,

and deduce that the columns of X are exactly the columns of B, i.e. X = B.  Thus we know that

A B = I .

To realize that B A = I as well, we would try to solve B Y = I for Y, and hope Y = A .  But we can actually 
verify this fact by reordering the columns of I  B  to read B  I  and then reversing each of the 
elementary row operations in the first computation, in reverse order, i.e. create the chain

B  I I  A  .

So B A = I also holds! (This is one of those rare times when matrix multiplication actually is commuative.) 

To summarize:  If A 1 exists, then solutions x to A x = b always exist and are unique, so the reduced row 
echelon form of A is the identity.  If the reduced row echelon form of A is the identity, then A 1 exists, 
because we have an algorithm to find it.  That's exactly what the Theorem claims.



There's a nice formula for the inverses of 2 2 matrices, and it turns out this formula will lead to the next 
text section 3.6 on determinants:

Theorem:  
a b

c d

1

 exists if and only if the determinant D = ad bc of  
a b

c d
 is non-zero.  And in 

this case,

 
a b

c d

1

=
1

ad bc
d b

c a
 

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms.  This formula should be memorized.)

Exercise 6a)  Check that this formula for the inverse works, for D 0 .  (We could have derived it with 
elementary row operations, but it's easy to check since we've been handed the formula.)

6b)  Even with systems of two equations in two unknowns, unless they come from very special problems 
the algebra is likely to be messier than you might expect (without the formula above).  Use the magic 
formula to solve the system

3 x 7 y = 5  
5 x 4 y = 8 .



Remark:  For a 2 2 matrix 
a b

c d
, the reduced row echelon form will be the identity if and only if the 

two rows are not multiples of each other:  And if a, b  are both non-zero then saying that the second row is

not a multiple of the first row is the same as saying that  
c
a

d
b

  (the ratios of the second row entries to 

the corresponding first row entries).  Cross multiplying we see this is the same as ad bc , i.e. 
ad bc 0 .  The "determinant not equal to zero" condition is also the correct condition for the rows not 
being multiples, even if one or both of a, b are zero.  So this is the condition that A reduces to the identity 
and has an inverse matrix.    knowing the inverse matrix exists.

Remark:  Determinants are defined for square matrices An n and the resulting number determines whether
or not the inverse matrices exist, (i.e. whether the reduced row echelon form of A is the identity matrix).  
And,  when n 2 there are analogous (but more complicated) magic formulas for the inverse matrices 
when the inverses exist, that generalize the one you're memorizing for n = 2.  This is section 3.6 material 
that we'll discuss carefully tomorrow, Wednesday, and next week Monday.



Tues Feb 13
          3.6 determinants 

Announcements: 

Warm-up Exercise:



Determinants are scalars defined for square matrices An n  They always determine whether or not the 

inverse matrix A 1 exists, (i.e. whether the reduced row echelon form of A is the identity matrix):  In fact, 
the determinant of A is non-zero if and only if A 1 exists. The determinant of a 1 1 matrix a11  is 
defined to be the number a11; determinants of 2 2 matrices are defined as in yesterday's notes; and in 
general determinants for n n matrices are defined recursively, in terms of determinants of 
n 1 n 1  submatrices:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

More generally, the determinant of the n 1 n 1  matrix obtained by deleting row i and column j 
from A is called the i j Minor Mi j  of A, and Ci j 1 i jMi j is called the i j Cofactor of A .

Exercise 1  Check that the messy looking definition above gives the same answer we talked about 
yesterday in the 2 2 case, namely

a11 a12

a21 a22
=  a11a22   a21 a12 .



There's a nice formula for the inverses of 2 2 matrices, and it turns out this formula will lead to the next 
text section 3.6 on determinants:

Theorem:  
a b

c d

1

 exists if and only if the determinant D = ad bc of  
a b

c d
 is non-zero.  And in 

this case,

 
a b

c d

1

=
1

ad bc
d b

c a
 

(Notice that the diagonal entries have been swapped, and minus signs have been placed in front of the off-
diagonal terms.  This formula should be memorized.)

Exercise 6a)  Check that this formula for the inverse works, for D 0 .  (We could have derived it with 
elementary row operations, but it's easy to check since we've been handed the formula.)

6b)  Even with systems of two equations in two unknowns, unless they come from very special problems 
the algebra is likely to be messier than you might expect (without the formula above).  Use the magic 
formula to solve the system

3 x 7 y = 5  
5 x 4 y = 8 .



from the last page, for our convenience:

Definition:  Let An n = ai j  .  Then the determinant of A, written det A  or A  , is defined by

det A
j = 1

n

a1 j 1 1 jM1 j =
j = 1

n

a1 jC1 j .

Here M1 j is the determinant of the n 1 n 1  matrix obtained from A by deleting the first row 

and the jth column, and C1 j is simply 1 1 jM1 j .

Exercise 2   Work out the expanded  formula for the determinant of a 3 3 matrix.  It's not worth 
memorizing (as opposed to the recursive formula above), but it's good practice to write out at least once, 
and we might point to it later.

a11 a12 a13

a21 a22 a23

a31 a32 a33

   =   



Theorem: (proof is in text appendix) det A  can be computed by expanding across any row, say row i: 

det A
j = 1

n

ai j 1 i jMi j =
j = 1

n

ai jCi j

or by expanding down any column, say column j: 

det A
i = 1

n

ai j 1 i jMi j =
i = 1

n

ai jCi j .

Exercise 3a)  Let A :=

1 2 1

0 3 1

2 2 1
 .  Compute det A  using the definition.  (On the next page we'll use 

other rows and columns to do the computation.)



From previous page,

A :=

1 2 1

0 3 1

2 2 1
 .

3b)  Verify that the matrix of all the cofactors of A is given by Ci j =

5 2 6

0 3 6

5 1 3
 .  Then expand 

det A  down various columns and rows using the ai j factors and Ci j cofactors.  Verify that you always 
get the same value for det A , as the Theorem on the previous page guarantees. Notice that in each case 
you are taking the dot product of a row (or column) of A with the corresponding row (or column) of the 
cofactor matrix.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
      



3c)  What happens if you take dot products between a row of A and a different row of Ci j  ?  A column 
of A and a different column of Ci j  ?   The answer may seem magic.  We'll come back to this example 
when we talk about the magic formula for the inverses of 3 3  (or n n) invertible matrices.

A :=

1 2 1

0 3 1

2 2 1
             Ci j =

5 2 6

0 3 6

5 1 3
       



Exercise 4)  Compute the following determinants by being clever about which rows or columns to use:

4a)  

1 38 106 3

0 2 92 72

0 0 3 45

0 0 0 2

 ;                             4b)   

1 0 0 0
2

2 0 0

0.476 88 3 0

1 22 33 2

 .

Exercise 5)  Explain why it is always true that for an upper triangular matrix (as in 2a), or for a lower 
triangular matrix (as in 2b), the determinant is always just the product of the diagonal entries.



Wed Feb 14
          3.6 determinants 
          midterm Friday!

Announcements: 

Warm-up Exercise:



The effective way to compute determinants for larger-sized matrices without lots of zeroes is to not use the 
definition, but rather to use the following facts, which track how elementary row operations affect 
determinants:
     (1a)  Swapping any two rows changes the sign of the determinant.

             proof:  This is clear for 2 2 matrices, since
a b

c d
= ad bc,          

c d
a b = cb ad .

               For 3 3 determinants, expand across the row not being swapped, and use 
               the 2 2 swap property  to deduce the result.  Prove the general result by induction:  
               once it's true for n n matrices you can prove it for any n 1 n 1  matrix, 
               by expanding across a row that wasn't swapped, and applying the n n result.

         (1b)   Thus, if two rows in a matrix are the same, the determinant of the matrix must be zero:  
                on the one hand, swapping those two rows leaves the matrix and its determinant unchanged;
                on the other hand, by (1a) the determinant changes its sign.  The only way this is possible
                is if the determinant is zero.



       (2a)   If you factor a constant out of a row, then you factor the same constant out of the determinant.
                Precisely, using 

i
 for ith row of A , and writing 

i
= c 

i
*  

 
1
 

 
2
 

:  
 

i
 

  
n
 

=

 
1
 

 
2
 

:  
 c 

i
* 

  
n
 

= c 

 
1
 

 
2
 

:  
 

i
* 

  
n
 

  .

              proof:  expand across the ith row,  noting that the corresponding cofactors don't 
              change, since they're computed by deleting the ith row to get the corresponding minors:

det A =
j = 1

n

ai jCi j =
j = 1

n

c ai j
* Ci j = c

j = 1

n

ai j
* Ci j = c det A*  .

         

         (2b)  Combining (2a) with (1b), we see that if one row in A is a scalar multiple 
              of another, then det A = 0 .



       (3)  If you replace row i of A, 
i
  by its sum with a multiple of another row, say 

k
  then the 

              determinant is unchanged!  Expand across the ith row:

 
1
 

 
2
 

k
 

 
i

c 
k
 

  
n
 

=
j = 1

n

a
i j

c a
k j

C
i j

=
j = 1

n

a
i j

C
i j

c
j = 1

n

a
k j

C
i j

= det A c 

 
1
 

 
2
 

k
 

 
k
 

  
n
 

= det A 0 .

Remark:  The analogous properties hold for corresponding "elementary column operations".  In fact, the 
proofs are almost identical, except you use column expansions.



Exercise 1)  Recompute 

1 2 1

0 3 1

2 2 1
 from yesterday (using row and column expansions we always got 

an answer of 15 then.)  This time use elementary row operations (and/or elementary column operations).

Exercise 2)  Compute 

1 0 1 2

2 1 1 0

2 0 1 1

1 0 2 1

 .



Theorem:  Let An n .  Then A 1 exists if and only if det A 0 .

proof:  We already know that A 1 exists if and only if the reduced row echelon form of A is the identity 
matrix.  Now, consider reducing A to its reduced row echelon form, and keep track of how the 
determinants of the corresponding matrices change:  As we do elementary row operations,

   if we swap rows, the sign of the determinant switches.

   if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

   if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, 
         A  = c1 A1 = c1c2 A2 = ... = c1c2 ... cN rref A  

where the nonzero ck 's arise from the three types of elementary row operations.  If rref A = I its 
determinant is 1, and  A = c1c2 ... cN 0 .  If rref A I then its bottom row is all zeroes and its 
determinant is zero, so  A = c1c2 ... cN 0 = 0 .  Thus A 0 if and only if rref A = I if and only if 

A 1 exists !

Remark:  Using the same ideas as above, you can show that det A B = det A det B .  This is an 
important identity that gets used, for example, in multivariable change of variables formulas for integration,
using the Jacobian matrix.  (It is not true that det A B = det A det B  .)  Here's how to show 
det A B = det A det B : The key point is that if you do an elementary row operation to AB , that's the 
same as doing the elementary row operation to A , and then multiplying by B.  With that in mind, if you do 
exactly the same elementary row operations as you did for A  in the theorem above, you get

  A B  = c1 A1B = c1c2 A2B = ... = c1c2 ... cN rref A B .

If rref A = I , then from the theorem above,  A = c1c2 ... cN , and we deduce A B = A B . If 
rref A I , then its bottom row is zeroes, and so is the bottom row of rref A B .  Thus A B = 0 and 
also A B = 0 .



There is a "magic" formula for the inverse of square matrices A (called the "adjoint formula") that uses the 
determinant of A along with the cofactor matrix of A.  We'll talk about the magic formula on Monday next 
week, after the midterm.



Exam notes:

The exam is this Friday February 16, from 10:40-11:40 a.m.  Note that it will start 5 minutes before the 
official start time for this class, and end 5 minutes afterwards, so you should have one hour to work on the
exam.  Get to class early, and bring your University I.D. card, which we might ask you to show if we 
don't recognize you from sections or lecture.  

This exam will cover textbook material from 1.1-1.5, 2.1-2.4, 3.1-3.5.  The exam is closed book and 
closed note.  You may use a scientific (but not a graphing) calculator, although symbolic answers are 
accepted for all problems, so no calculator is really needed.  (Using a graphing calculator which can do 
matrix computations for example, is grounds for receiving grade of 0 on your exam.  So please ask before 
the exam if you're unsure about your calculator.  And of course, your cell phones must be put away.) 

I recommend trying to study by organizing the conceptual and computational framework of the course so 
far.  Only then, test yourself by making sure you can explain the concepts and do typical problems which 
illustrate them. The class notes and text should have explanations for the concepts, along with worked 
examples.  Old homework assignments and quizzes are also a good source of problems.  It could be 
helpful to look at quizzes/exams from my previous Math 2250 classes, which go back several years from 
the link

http://www.math.utah.edu/~korevaar/oldclasses.html.
Your lab meetings tomorrow will be exam review sessions.



Chapter 3:

3a)  Can you recognize an algebraic linear system of equations?

3b) Can you interpret the solution set geometrically when there are 2 or three unknowns?

3c)  Can you use Gaussian elimination to compute reduced row echelon form for matrices?  Can you 
apply this algorithm to augmented matrices to solve linear systems ?  

3d)  What does the shape of the reduced row echelon form of a matrix A tell you about the possible 
solution sets to Ax = b  (perhaps depending, and perhaps not depending on b )?  Focus especially on 
whether each row  of the reduced matrix has a pivot or not;  and on whether each column of the reduced 
matrix has a pivot or not.

3e) What properties do (and do not) hold for the matrix algebra of addition, scalar multiplication, and 
matrix multiplication?



3f)  What is the matrix inverse, A 1 for a square matrix A ?  Does every square matrix have an inverse?  
How can you tell whether or not a matrix has an inverse, using reduced row echelon form?    What's the 
row operations way of finding A 1, when it exists?  Can you use matrix algebra to solve matrix equations 
for unknown vectors x or matrices X ,  possibly using matrix inverses and other algebra manipulations?  



Chapters 1-2:

1a) What is a differential equation?  What is its order?  What is an initial value problem, for a first or 
second order DE?

1b) How do you check whether a function solves a differential equation?  An initial value problem?

1c) What is the connection between a first order differential equation and a slope field for that differential 
equation?  The connection between an IVP and the slope field? 

1d) Do you expect solutions to IVP's to exist, at least for values of the input variable close to its initial 
value?  Why? Do you expect uniqueness?  What can cause solutions to not exist beyond a certain input 
variable value?  

1e)  What is Euler's numerical method for approximating solutions to first order IVP's, and how does it 
relate to slope fields?

1f) What's an autonomous differential equation?  What's an equilibrium solution to an autonomous 
differential equation?  What is a phase diagram for an autonomous first order DE, and how do you 
construct one?  How does a phase diagram help you understand stability questions for equilibria?  What 
does the phase diagram for an autonomous first order DE have to do with the slope field?



1g)  Can you recognize the first order differential equations for which we've studied solution algorithms, 
even if the DE is not automatically given to you pre-set up for that algorithm?  Do you know the 
algorithms for solving these particular first order DE's?

2) Can you convert a description of a dynamical system in terms of rates of change, or a geometric 
configuration in terms of slopes, into a differential equation?  What are the models we've studied carefully
in Chapters 1-2?  What  sorts of DE's and IVP's arise?  Can you solve these basic application DE's, once
you've set up the model as a differential equation and/or IVP?


