
Math 2250-004  Week 4 notes
We will not necessarily finish the material from a given day's notes on that day.  We may also add or 
subtract some material as the week progresses, but these notes represent an in-depth outline of what we 
plan to cover.  These notes include material from 2.3-2.6, with an introduction to 3.1-3.2.

Mon Jan 29
     2.3  Improved acceleration models:  linear and quadratic drag forces.

Announcements: 

Warm-up Exercise:

 



2.3 Improved acceleration models: velocity-dependent drag 

For 1-dimensional particle motion, with 
position x t  (or y t  , 

velocity x t = v t  , and 
acceleration x t = v t = a t  

We have Newton's 2nd law
m v t = F

where F is the net force, possible a sum consisting of several terms.

    By now we're very familiar with constant force F = m  , where  is a constant:
v t =  

v t =  t v0 

x t =
1
2

 t2 v0 t x0 .

Examples we've seen already in this course
    = g near the surface of the earth, if up is the positive direction, or = g if down is the positive 

direction.
      arising from a charged particle moving through a constant electric field (lab problem)
   boats or cars moving with constant acceleration or deceleration (homework).

New today !!!  Combine a constant background force with a velocity-dependent drag force, at the same 
time.  The text calls this a "resistance" force:

m v t = m  FR 

Empirically/mathematically the resistance forces FR depend on velocity, in such a way that their magnitude 
is

FR k v p  , 1 p 2 .



   p = 1 (linear model, drag proportional to velocity):
m v t = m  k v 

This linear model makes sense for "slow" velocities, as a linearization of the frictional force function, 
assuming that the force function is differentiable with respect to velocity...recall Taylor series for how the 
velocity resistance force might depend on velocity:

FR v = FR 0 FR 0  v  
1
2!

FR 0 v2  ...  

FR 0 = 0 and for small enough v the higher order terms might be negligable compared to the linear term, 
so

FR v  FR 0  v k v  .

We write k v with k 0, since the frictional force opposes the direction of motion, so sign opposite of 
the velocity's.  

http://en.wikipedia.org/wiki/Drag_(physics)#Very_low_Reynolds_numbers:_Stokes.27_drag 

Exercise 1:  Let's rewrite the linear drag model
m v t = m  k v 

as
v t =  v 

where the =
k
m

 .  Now construct the phase diagram for v .  (Hint: there is one critical value for v.)

The value of the constant velocity solution is called the terminal velocity, which makes good sense when 
you think about the underlying physics and phase diagram.  



   p = 2 , for the power in the resistance force. This can be an appropriate model for velocities which are 
not "near" zero....described in terms of "Reynolds number" Accounting for the fact that the resistance 
opposes direction of motion we get

m v t = m  k v2    if v 0 

m v t = m  k v2    if v 0.

Do you understandt the sign of the drag terms in these two cases?

http://en.wikipedia.org/wiki/Drag_(physics)#Drag_at_high_velocity

Once again letting =
k
m

  we can rewrite the DE's as

v t =   v2    if v 0 
v t =   v2    if v 0.

Exercise 2)   Consider the case in which = g , so we are considering vertical motion, with up being the 
positive direction.  

v t = g  v2    if v 0 
v t = g  v2    if v 0.

Draw the phase diagrams.  Note that each diagram contains a half line of v-values.  Make conclusions 
about velocity behavior in case v0 0 and v0 0. Is there a terminal velocity?

How would you set up and get started on finding the solutions to these two differential equations?  A 
couple of your homework problems are related to this quadratic drag model.



Exercise 3a  Returning to the linear drag model and with.  Solve the IVP
v t =  v 

v 0 = v0 
and verify that your solutions are consistent with the phase diagram analysis two pages back.  (This is, 
once again, our friend the first order constant coefficient linear differential equation.)

3b integrate the velocity function above to find a formula for the position function y t .  Write y 0 = y0.  



Comparison of Calc 1 constant acceleration vs. linear drag acceleration model:

We consider the bow and deadbolt example from the text, page 102-104.  It's shot vertically into the air 

(watch out below!), with an initial velocity of 49 
m
s

 .  (That initial velocity is chosen because its numerical

value is 5 times the numerical value of g = 9.8   
m
s2 , which simplifies some of the computations.)  In the 

no-drag case, this could just be the vertical component of a deadbolt shot at an angle.  With drag, one 
would need to study a more complicated system of  coupled differential equations for the horizontal and 
vertical motions, if you didn't shoot the bolt straight up.  So we're shooting it straight up.

No drag:

v t = g 9.8 
m
s2  

v t = g t v0 = g t 5 g = g t 5      
m
s

x t =
1
2

g t2 v0 t x0 =
1
2

g t2 5 g t = g t 
1
2

t 5        m 

So our deadbolt goes up for 5 seconds, then drops for 5 seconds until it hits the ground.  Its maximum 
height is given by

x 5 =
g 5 5

2
= 122.5 m 

Linear drag:  The same deadbolt, with the same initial velocity with numerical value 5 g = 49  
m
s

.  We're 

told that our deadbolt has a measured terminal velocity of v = 245 
m
s

  which is the numerical value of 

25 g.   The initial value problem for velocity is

v t = g  v 
v 0 = v0 = 25 g = 245. 

So, in these letters the terminal velocity is (easily recoverable by setting v t = 0 ) and is given by

v  =  
g

 = 25 g   = .04 .

So, from our earlier work:  Substituting = g into the formulas for terminal velocity, velocity, and height:

v t = v v0 v  e  t  = 245  294 e .04 t .

y t =   245 t  
294
.04

1 e .04 t  .



> > 

> > 
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The maximum height occurs when v t = 0, 

245  294 e .04 t = 0 
which yields t = 4.56 sec:

ln
245.
294.
.04

;

4.558038920

And the maximum height is 108.3 m:

y t 245. t
294
.04

1 e .04 t ;

 y 4.558038920 ;

y  t 1 245. t
294 1 e 1 0.04 t

0.04
108.280465

So the drag caused the deadbolt to stop going up sooner (t = 4.56 vs. t = 5 sec)  and to not get as high (
108.3 vs 122.5 m).  This makes sense.  It's also interesting what happens on the way down - the drag 
makes the descent longer than the ascent: 4.85 seconds on the descent, vs. 4.56 on the ascent.

solve y t = 0, t ;
9.410949931, 0.

9.411 4.558;
4.853

IMPORTANT to note that we needed to use a "solve" command (or something sophisticated like 
Newton's method) to find when the deadbolt landed.  You cannot isolate the t algebraically when trying to 
solve y t = 0 for t.  This situation will also happen in some of the lab and/or homework problems this 
week.

245. t
294
.04

1 e .04 t = 0



> > 

> > 
picture:

z t 49 t 4.9 t2 :
 with plots :
 plot1 plot z t , t = 0 ..10, color = green :
 plot2 plot y t , t = 0 ..9.4110, color = blue :
 display plot1, plot2 , title = `comparison of linear drag vs no drag models` ;
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comparison of linear drag vs no drag models



Tues Jan 30
     2.4  Euler's method for solving first order differential equations

Announcements: 

Warm-up Exercise:



2.4 Euler's method.

 In these notes we will study numerical methods for approximating solutions to first order differential 
equations. Later in the course we will see how higher order differential equations can be converted into 
first order systems of differential equations.   It turns out that there is a natural way to generalize what we 
do now in the context of a single first order differential equations, to systems of first order differential 
equations.  So understanding this material will be an important step in understanding numerical solutions 
to higher order differential equations and to systems of differential equations later on.  I wrote these notes 
using the software package Maple.  Your lab questions on Thursday will let you do analogous 
computations in Matlab.  Today we'll focus on Euler's method.  Tomorrow we'll study "improved Euler" 
(section 2.5) and Runge Kutta (section 2.6).

Euler's Method:
     The most basic method of approximating solutions to differential equations is called Euler's method, 
after the 1700's mathematician who first formulated it.  Consider the initial value problem 

dy
dx

= f x, y

y x0 = y0.
We make repeated use of the familiar (tangent line) approximation

y x x y x y x x

where we substitute in the slope function  f x, y , for y x .  

As we iterate this procedure we and the text will write "h"  fixed step size, x h.  As we increment the 
inputs x and outputs y we are approximating the graph of the solution to the IVP.  We begin at the initial 
point x0, y0 .  Then the next horizontal value on the discrete graph will be

x1 = x0 h
And the next vertical value  y1 (approximating the exact value y x1  ) is

y1 = y0 f x0, y0 h.

In general, if we've approximated xj, yj  we set
xj 1 = xj h 

yj 1 = yj f xj, yj h.

We could also approximate in the x direction from the initial point x0, y0 , by defining e.g.
x 1 = x0 h

y 1 = y0 h f x0, y0  
and more generally via

x j 1 = x j  h
y j 1 = y j h f x j, y j

...etc.



Below is a graphical representation of the Euler method, illustrated for the IVP
y x = 1 3 x y

y 0 = 0
with step size h = 0.2.  
Exercise 1 Find the numerical values for several of the labeled points.



    As a running example in the remainder of these notes we will use one of our favorite IVP's from the 
time of Calculus, namely the initial value problem for y x ,

y x = y
y 0 = 1.

We know that  y = ex is the solution, so we'll be able to compare approximate and exact solution values.

Exercise 2  Work out by hand the approximate solution to the IVP above
on the interval 0, 1 , with n = 5 subdivisions and h = 0.2, using Euler's method.  This table might help 
organize the arithmetic.  In this differential equation the slope function is f x, y = y so is especially easy to
compute.

step i x
i

y
i

 slope 
f x

i
, y

i
x y =  f x

i
, y

i
x x

i
x

y
i

y

0 0 1 1 0.2 0.2 0.2 1.2

1 0.2 1.2

2

3

4

5

Euler Table

Your work should be consistent with the picture below.
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Here is the automated computation for the previous exercise, and a graph comparing the approximate 
solution points to the actual solution graph:

Initialize:
restart :  #clear all memory, if you wish
Digits 6 :  #use floating point arithmetic with 6 digits.  could use more if desired
unassign `x`, `y` ;  # in case you used the letters elsewhere
f x, y y;  # slope field function for the DE  y (x)=y
                            # change for different DE's!!!

f  x, y y

x 0 0; y 0 1;  #initial point
 h 0.2; n 5;    #step size and number of steps

x0  0

y0  1

h  0.2
n  5

exactsol x ex;  #exact solution for the IVP  y'=y, y(0)=1
                                 #change (or omit) for different IVP's!!!

exactsol  x ex

Euler Loop
for i from 0 to n do  #this is an iteration loop, with index "i" running from 0 to n
    print i, x i , y i , exactsol x i ;     
           #print iteration step, current x,y, values, and exact solution value
    k f x i , y i ;  #current slope function value
    x i 1 x i h;
    y i 1 y i h k;
end do:  #how to end a do loop in Maple

0, 0, 1, 1
1, 0.2, 1.2, 1.22140
2, 0.4, 1.44, 1.49182
3, 0.6, 1.728, 1.82212
4, 0.8, 2.0736, 2.22554
5, 1.0, 2.48832, 2.71828



> > 
Plot results:

with plots :
Eulerapprox pointplot seq x i , y i , i = 0 ..n :  #approximate soln points
 exactsolgraph plot exactsol t , t = 0 ..1, `color` = `black` :   #exact soln graph
      #used t because x has been defined to be something else
 display Eulerapprox, exactsolgraph , title = `approximate and exact solution graphs` ;

t
0 0.2 0.4 0.6 0.8 1

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

approximate and exact solution 
graphs

Exercise 3  Why are our approximations too small in this case, compared to the exact solution?
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     It should be that as your step size h = x gets smaller, your approximations to the actual solution get 
better.  This is true if your computer can do exact math (which it can't), but in practice you don't want to 
make the computer do too many computations because of problems with round-off error and computation 
time, so for example, choosing h = .0000001 would not be practical. But, trying h = 0.01 in our previous 
initial value problem should be instructive.
     If we change the n-value to 100 and keep the other data the same we can rerun our experiment, copying,
pasting, modifying previous work.

Initialize
restart :  #clear all memory, if you wish
unassign `x`, `y` ;  # in case you used the letters elsewhere
Digits 6 :
f x, y y :  # slope field function for the DE  y (x)=y
                            # change for different DE's!!!
x 0 0 : y 0 1 : #initial point
 h 0.01 : n 100 :   #step size and number of steps
exactsol x ex : #exact solution for the IVP  y'=y, y(0)=1
                                 #change (or omit) for different IVP's!!!

Euler Loop  (modified using an "if then" conditional clause to only print every 10 steps)

for i from 0 to n do  #this is an iteration loop, with index "i" running from 0 to n

       if frac
i

10
= 0

                then print i, x i , y i , exactsol x i ;     
        end if:  #only print every tenth time 
    k f x i , y i ;  #current slope function value
    x i 1 x i h;
    y i 1 y i h k;
end do:  #how to end a for loop in Maple

0, 0, 1, 1
10, 0.10, 1.10463, 1.10517
20, 0.20, 1.22020, 1.22140
30, 0.30, 1.34784, 1.34986
40, 0.40, 1.48887, 1.49182
50, 0.50, 1.64463, 1.64872
60, 0.60, 1.81670, 1.82212
70, 0.70, 2.00676, 2.01375
80, 0.80, 2.21672, 2.22554
90, 0.90, 2.44864, 2.45960

100, 1.00, 2.70483, 2.71828



> > 
plot results:

with plots :
Eulerapprox pointplot seq x i , y i , i = 0 ..n , color = red : 
 exactsolgraph plot exactsol t , t = 0 ..1, `color` = `black` :   
      #used t because x was already used has been defined to be something else
 display Eulerapprox, exactsolgraph , title = `approximate and exact solution graphs` ;

t
0 0.2 0.4 0.6 0.8 1

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

approximate and exact solution graphs



Exercise 4:  For this very special initial value problem 
y x = y
y 0 = 1

which has y x = ex as the solution, set up Euler on the x-interval 0, 1 , with n subdivisions, and  step 

size  h =
1
n

.  Write down the resulting Euler estimate for exp 1 = e.  What is the limit of this estimate as  

n ?  You learned this special limit in Calculus!



Wed Jan 31
     2.5-2.6  Improved Euler and Runge Kutta.

Announcements: 

Warm-up Exercise:



2.5-2.6  Improved Euler and Runge Kutta

    In more complicated differential equations it is a very serious issue to find relatively efficient ways of 
approximating solutions.  An entire field of mathematics, ``numerical analysis'' deals with such issues for a
variety of mathematical problems.   Our text explores improvements to Euler  in sections 2.5 and 2.6, in 
particular it discusses improved Euler, and Runge Kutta.  Runge Kutta-type codes are actually used in 
commerical numerical packages, e.g. in Wofram, Matlab, Maple etc.
     Let's summarize some highlights from 2.5-2.6.

     Suppose we already knew the solution y x  to the initial value problem
y x = f x, y   

y x0 = y0.  

If we integrate the DE from x to x h and apply the Fundamental Theorem of Calculus, we get

y x h y x =
x

x h
f t, y t dt , i.e.

y x h = y x
x

x h
f t, y t dt .  

One problem with Euler is that we approximate this integral above by h f x, y x , i.e. we use the value at
the left-hand endpoint as our approximation of the integrand, on the entire interval from x to x h.  This 
causes errors that are larger than they need to be, and these errors accumulate as we move from subinterval
to subinterval and as our approximate solution diverges from the actual solution. The improvements to 
Euler depend on better approximations to the integral.  These are subtle, because we don't yet have an 
approximation for y t  when t is greater than x, so also not for the integrand f t, y t  on the interval 
x, x h .  



Improved Euler  uses an approximation to the Trapezoid Rule to compute the integral in the formula

y x h = y x
x

x h
f t, y t dt . 

Recall, the trapezoid rule to approximate the integral

x

x h
f t, y t dt

would be

 
1
2

h f x, y x f x h, y x h .  

Since we don't know y x h  we approximate its value with unimproved Euler, and substitute into the 
formula above.  This leads to the improved Euler "pseudocode" for how to increment approximate 
solutions.

Improved Euler pseudocode:

k
1

= f x
j
, y

j
                       #current slope

k
2

= f x
j

h, y
j

h k
1

   #use unimproved Euler guess for y x
j

h  to estimate slope function when x = x
j

h 

k =
1
2 k

1
k
2

                #average of two slopes
x
j 1

= x
j

h                     #increment x 
y
j 1

= y
j

h k                  #increment y 

Exercise 1  Contrast Euler and Improved Euler for our IVP
y x = y
y 0 = 1

to estimate y 1 e with one step of size h = 1.  Your computations should mirror the picture below.  
Note that with improved Euler we actually get a better estimate for e with ONE step of size 1 than we did 
with 5 steps of size h = 0.2 using unimproved Euler on Tuesday.  (It's still not a very good estimate.)



     In the same vein as ``improved Euler'' we can use the Simpson approximation for the integral for y  
instead of the Trapezoid rule, and this leads to the Runge-Kutta method.  You may or may not have talked 
about Simpson's Parabolic Rule for approximating definite integrals in Calculus.  It is based on a parabolic 
approximation to the integrand , whereas the Trapezoid rule is based on an approximationg of the graph 
with trapezoids, on small subintervals.

Simpson's Rule:

Consider two numbers x0 x1 , with interval width h = x1 x0 and interval midpoint x =
1
2

x0 x1 .  

If you fit a parabola p x  to the three points
x
0
, g x

0
,  x, g x ,  x

1
, g x

1
then

x
0

x
1
p t dt = 

h
6 g x

0
4 g x g x

1
.

(You will check this fact in your homework this week!) This formula is the basis for Simpson's rule, 
which you can also review in your Calculus text or at Wikipedia.  (Wikipedia also has a good entry on 
Runge-Kutta.)  Applying the Simpson's rule approximation for our DE, and if we already knew the 
solution function y x , we would have

y x h = y x
x

x h

f t, y t dt 

               y x
h
6 f x, y x 4 f x

h
2 , y x

h
2 f x h, y x h   .   

However, we have the same issue as in Trapezoid - that we've only approximated up to y x  so far.  Here's
the magic pseudo-code for how Runge-Kutta takes care of this.  (See also section 2.6 to the text.)

Runge-Kutta pseudocode:

k
1

= f x
j
, y

j
    # left endpoint slope

k
2

= f x
j

h
2 , y

j

h
2  k

1
 # first midpoint slope estimate, using k

1
 to increment y

j
 

k
3

= f x
j

h
2 , y

j

h
2  k

2
  # second midpoint slope estimate using k

2
 to increment y

j
k
4

= f x
j

h, y
j

h k
3

         # right hand slope estimate, using k
3
 to increment y

j
 

k =
1
6 k

1
2 k

2
2 k

3
k
4

  #weighted average of all four slope estimates, consistent with Simpson's rule
x
j 1

= x
j

h       # increment x  
y
j 1

= y
j

h k     # increment y



Exercise 2  Contrast Euler and Improved Euler to Runge-Kutta for our IVP
y x = y
y 0 = 1

to estimate y 1 e with one step of size h = 1.  Your computations should mirror the picture below.  
Note that with Runge Kutta you actually get a better estimate for e with ONE step of size h = 1 than you 
did with 100 steps of size h = 0.01 using unimproved Euler!

Runge-Kutta pseudocode:

k
1

= f x
j
, y

j
    # left endpoint slope

k
2

= f x
j

h
2 , y

j

h
2  k

1
 # first midpoint slope estimate, using k

1
 to increment y

j
 

k
3

= f x
j

h
2 , y

j

h
2  k

2
  # second midpoint slope estimate using k

2
 to increment y

j
k
4

= f x
j

h, y
j

h k
3

         # right hand slope estimate, using k
3
 to increment y

j
 

k =
1
6 k

1
2 k

2
2 k

3
k
4

  #weighted average of all four slope estimates, consistent with Simpson's rule
x
j 1

= x
j

h       # increment x  
y
j 1

= y
j

h k     # increment y
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Numerical experiments

Estimate e by estimating y 1  for the solution to the IVP
y x = y
y 0 = 1.

Apply Runge-Kutta with n = 10, 20, 40 ... subintervals, successively doubling the number of subintervals 
until you obtain the target number below - rounded to 9 decimal digits - twice in succession. 

evalf e ;
2.718281828459045

It worked with n = 40:

Initialize
restart : # clear any memory from earlier work
Digits 15 :  # we need lots of digits for "famous numbers"

unassign `x`, `y` :  # in case you used the letters elsewhere, and came back to this piece of code
f x, y y :  # slope field function for our DE i.e. for y (x)=f(x,y)
x 0 0 : y 0 1 :  #initial point
 h 0.025 : n 40 :    #step size and number of steps - first attempt for "famous number e"

Runge Kutta loop.  WARNING: ONLY RUN THIS CODE AFTER INITIALIZING
for i from 0 to n do  #this is an iteration loop, with index "i" running from 0 to n
    if frac i

10 = 0
             then  print i, x i , y i ;  #print iteration step, current x,y, values, and exact solution value
    end if:
    k1 f x i , y i ;  #current slope function value
    k2 f x i h

2 , y i h
2 k1 ; 

# first estimate for slope at right endpoint of midpoint of subinterval
    k3 f x i h

2 , y i h
2 k2 ; #second estimate for midpoint slope

    k4 f x i h, y i h k3 ;  #estimate for right-hand slope
    k k1 2  k2 2 k3 k4

6 ;  # Runge Kutta estimate for rate of change of y
    x i 1 x i h;
    y i 1 y i h k;
end do:  #how to end a for loop in Maple

0, 0, 1
10, 0.250, 1.28402541566434
20, 0.500, 1.64872126807197
30, 0.750, 2.11700001155073
40, 1.000, 2.71828181979283
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For other problems you may wish to use or modify the following Euler and improved Euler loops.

Euler loop:  WARNING: ONLY RUN THIS CODE AFTER INITIALIZING
for i from 0 to n do  #this is an iteration loop, with index "i" running from 0 to n
    print i, x i , y i ;     
           #print iteration step, current x,y, values, and exact solution value
    k f x i , y i ;  #current slope function value
    x i 1 x i h;
    y i 1 y i h k;
end do:  #how to end a for loop in Maple

Improved Euler loop:  WARNING: ONLY RUN THIS CODE AFTER INITIALIZING
for i from 0 to n do  #this is an iteration loop, with index "i" running from 0 to n
    print i, x i , y i ;  #print iteration step, current x,y, values, and exact solution value
    k1 f x i , y i ;  #current slope function value
    k2 f x i h, y i h k1 ; #estimate for slope at right endpoint of subinterval

    k
k1 k2

2
;  # improved Euler estimate

    x i 1 x i h;
    y i 1 y i h k;
end do:  #how to end a do loop in Maple



Before running, please put Eulers.m, Runge Kutta.m, Improved Eulers.m,
SlopeField.m, example.m in the same folder. To see the result, input example
in the command windows

example.m

1 % Clear the command window screen, all the variables and ...
close all windows

2 clc, clear, close all
3

4 % Input your function f(x,y) (as a string), where f(x,y) = ...
dy/dx. In this example, f(x,y) = sin(x*y)

5 f = '1-3.*x+y';
6

7 % Draw the slope field in the region xminxxmax, ...
yminyymax for dy/dx = f(x,y)

8 xmin = -1;
9 xmax = 1;

10 ymin = -1;
11 ymax = 1;
12

13 SlopeField(xmin,xmax,ymin,ymax,f)
14

15 hold on
16

17 % Use different numerical methods to solve the IVP on the ...
interval [x0,b] with n subintervals :

18 % dy/dx = f(x,y)
19 % y(x0) = y0
20 x0 = 0;
21 b = 1;
22 y0 = 0;
23 n = 10;
24

25 % Use Euler Method to Solve
26 [x y]=Eulers(x0,y0,b,n,f);
27 plot(x,y,'--','LineWidth',2,'Color','r');
28

29 % Use Improved Euler Method to solve
30 [x y]=Improved Eulers(x0,y0,b,n,f);
31 plot(x,y,'-','LineWidth',2,'Color',[0.9100 0.4100 ...

0.1700]);
32

33 % Use Runge Kutta method to solve
34 [x y]=Runge Kutta(x0,y0,b,n,f);
35 plot(x,y,':','LineWidth',2,'Color','b');
36

37 xlabel('x');ylabel('y')
38 legend('Slope Field','Euler','Improved Euler','Runge Kutta')
39 title(['dy/dx = ' f])

1



The code gives you
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dy/dx = 1-3.*x+y

Slope Field

Euler

Improved Euler

Runge Kutta

The functions used in example.m

SlopeField.m

1 function []= SlopeField(xmin,xmax,ymin,ymax,f)
2 % the function f(x,y) must be entered as a string. For example if
3 % f(x,y)=y*cos(x), then you need to enter 'y*cos(x)' for f
4

5 f = str2func(['@(x,y) ',f]); % converts the string input into a ...
function handle

6

7 stepsize=abs(xmin-xmax)/40;
8 [X,Y] = meshgrid(xmin:stepsize:xmax, ymin:stepsize:ymax);
9 dY=f(X,Y);

10 dX=ones(size(dY));
11 L=sqrt(1+dY.ˆ2);
12 quiver(X,Y,dX./L,dY./L,'Color','k','LineWidth',1,'AutoScaleFactor',0.5);
13 axis tight

2



14 end

3



Eulers.m

1 function [x,y] = Eulers(x 0,y 0,b,n,f)
2 % Eulers method with n intervals to solve the initial value ...

problem dy/dx=f(x,y) with
3 % initial conditions y(x 0)=y 0 on the interval [x 0,b]. The ...

function
4 % f(x,y) must be entered as a string.
5

6 % For example, if you wish to solve dy/dx=y*cos(x) with y(0)=1 ...
on the

7 % interval [0,15] with 50 intervals you would enter
8 % Eulers(0,1,15,50,'y.*cos(x)')
9

10 f = str2func(['@(x,y) ',f]); %converts the string input into a ...
function handle

11

12 h=(b-x 0)/n;
13 x=zeros(n+1,1); y= zeros(n+1,1); %Pre-allocoting vectors for speed
14 x(1)=x 0; y(1)=y 0;
15

16 for i=1:n
17 x(i+1)=x 0+i*h;
18 y(i+1)=y(i)+h*f(x(i),y(i));
19 end
20 end

4



Improved Eulers.m

1 function [x,y] = Improved Eulers(x 0,y 0,b,n,f)
2 % Improved Eulers method with n intervals to solve the initial ...

value problem dy/dx=f(x,y) with
3 % initial conditions y(x 0)=y 0 on the interval [x 0,b]. The ...

function
4 % f(x,y) must be entered as a string.
5

6 % For example, if you wish to solve dy/dx=y*cos(x) with y(0)=1 ...
on the

7 % interval [0,15] with 50 intervals you would enter
8 % Improved Eulers(0,1,15,50,'y.*cos(x)')
9

10 f = str2func(['@(x,y) ',f]); % converts the string input into a ...
function handle

11

12 h=(b-x 0)/n;
13 x=zeros(n+1,1); y= zeros(n+1,1); % Pre-allocoting vectors for speed
14 x(1)=x 0; y(1)=y 0;
15 for i=1:n
16 x(i+1)=x 0+i*h;
17 k1=f(x(i),y(i));
18 u=y(i)+h*k1;
19 k2=f(x(i+1),u);
20 y(i+1)=y(i)+h*(k1+k2)/2;
21 end
22 end

5



Runge Kutta.m

1 function [x,y] = Runge Kutta(x 0,y 0,b,n,f)
2 % Runge Kutta method with n intervals to solve the initial value ...

problem dy/dx=f(x,y) with
3 % initial conditions y(x 0)=y 0 on the interval [x 0,b]. The ...

function
4 % f(x,y) must be entered as a string.
5

6 % For example, if you wish to solve dy/dx=y*cos(x) with y(0)=1 ...
on the

7 % interval [0,15] with 50 intervals you would enter
8 % Runge Kutta(0,1,15,50,'y.*cos(x)')
9

10 f = str2func(['@(x,y) ',f]); % converts the string input into a ...
function handle

11

12 h=(b-x 0)/n;
13 x=zeros(n+1,1); y= zeros(n+1,1); % Pre-allocoting vectors for speed
14 x(1)=x 0; y(1)=y 0;
15 for i=1:n
16 x(i+1)=x 0+i*h;
17 k1=f(x(i),y(i));
18 k2=f(x(i)+h/2,y(i)+h/2*k1);
19 k3=f(x(i)+h/2,y(i)+h/2*k2);
20 k4=f(x(i+1),y(i)+h*k3);
21 y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6;
22 end
23 end

6



Math 2250-004 
Friday Feb 2
     3.1-3.2  systems of linear (algebraic) equations

Announcements: 

Warm-up Exercise:



Exercise 1:  (Relates to this week's homework, and introduces systems of linear algebraic equations:

Find the quadratic function p x = a x2 b x c so that the graph y = p x  interpolates  (i.e. passes 
through) the three points 1, 0 , 0, 2 , 1, 2 : 

x
1 0.5 0 0.5 1

1
2

quadratic fit to three points 
(-1,0),(0,2),(1,2)



In Chapters 3-4 we temporarily leave differential equations in order to study basic concepts in linear 
algebra.  Almost all of you have studied linear systems of equations and matrices before, and that's where 
Chapter 3 starts.  Linear algebra is foundational for many different disciplines, and in this course we'll use 
the key ideas when we return to higher order linear differential equations and to systems of differential 
equations.  As it turns out, there's an example of solving simultaneous linear equations in this week's 
homework. It's related to Simpson's rule for numerical integration, which is itself related to the Runge-
Kutta algorithm for finding numerical solutions to differential equations.

In 3.1-3.2 our goal is to understand systematic ways to solve systems of (simultaneous) linear equations.  
Although we used a, b, c for the unknowns in the previous problem, this is not our standard way of 
labeling.
   We'll often call the unknowns x1, x2,... xn, or write them as elements in a vector 

x = x1, x2, ... xn .  
   Then the general linear system (LS) of m equations in the n unknowns can be written as

a11 x1 a12 x2 ...  a1 n xn = b1 
a21 x1 a22 x2 ...  a2 n xn = b2

  :                                      :      :
am1 x1 am2 x2 ...  am n xn = bm

where the coefficients ai j and the right-side number bj are known.  The goal is to find values for the vector
x so that all equations are true.  (Thus this is often called finding "simultaneous" solutions to the linear 
system, because all equations will be true at once, for the given vector x .

Notice that we use two subscripts for the coefficients ai j and that the first one indicates which equation it 
appears in, and the second one indicates which variable its multiplying;  in the corresponding coefficient 
matrix A , this numbering corresponds to the row and column of ai j:

A

 a11   a12   a13   ...    a1 n

 a21   a22   a23   ...   a2 n 

:                               :

am1   am2   am3  ...   am n

 



Let's start small, where geometric reasoning will help us understand what's going on:
Exercise 2:  Describe the solution set of each single equation below; describe and sketch its geometric 
realization in the indicated Euclidean spaces n .

2a)  3 x = 5 ,  for  x  .

2b)  2 x 3 y = 6,  for  x, y 2.

2c)  2 x 3 y 4 z = 12,  for x, y, z 3 .



2 linear equations in 2 unknowns:
a11 x a12 y = b1 
a21 x a22 y = b2 

goal:  find all x, y  making both of these equations true.  So geometrically you can interpret this problem 
as looking for the intersection of two lines.

Exercise 3: Consider the system of two equations E1, E2:
E1          5 x 3 y = 1 
E2            x  2 y = 8   

3a)  Sketch the solution set in 2, as the point of intersection between two lines.

3b)  Use the following three "elementary equation operations" to systematically reduce the system E1, E2 
to an equivalent system (i.e. one that has the same solution set), but of the form

1 x 0 y = c1 
0 x 1 y = c2 

(so that the solution is x = c1, y = c2).  Make sketches of the intersecting lines, at each stage.

The three types of elementary equation operation are below.  Can you explain why the solution set to the 
modified system is the same as the solution set before you make the modification?
    interchange the order of the equations
    multiply one of the equations by a non-zero constant
    replace an equation with its sum with a multiple of a different equation.



E1          5 x 3 y = 1 
E2            x  2 y = 8   



3c)  Look at your work in 3b.  Notice that you could have save a lot of writing by doing this computation 
"synthetically", i.e. by just keeping track of the coefficients and right-side values.  Using R1, R2 as 
symbols for the rows, your work might look like the computation below.  Notice that when you operate 
synthetically the "elementary equation operations" correspond to "elementary row operations":
    interchange two rows
    multiply a row by a non-zero number
    replace a row by its sum with a multiple of another row.

3d)  What are the possible geometric  solution sets to 1, 2, 3, 4 or any number of linear equations in two 
unknowns?



Solutions to linear equations in 3 unknowns:

What is the geometric question you're answering?

Exercise 4)  Consider the system 
x 2 y z = 4 

3 x 8 y 7 z = 20
2 x 7 y 9 z = 23 .

Use elementary equation operations (or if you prefer, elementary row operations in the synthetic version) 
to find the solution set to this system.  There's a systematic way to do this, which we'll talk about.  It's 
called Gaussian elimination.
Hint: The solution set is a single point, x, y, z = 5, 2, 3 .



Exercise 5  There are other possibilities.  In the two systems below we kept all of the coeffients the same 
as in Exercise 4, except for a33 , and we changed the right side in the third equation, for 4a.  Work out 
what happens in each case.  

5a)
x 2 y z = 4 

3 x 8 y 7 z = 20
2 x 7 y 8 z = 20 .

5b)
x 2 y z = 4 

3 x 8 y 7 z = 20
2 x 7 y 8 z = 23 .

5c)  What are the possible solution sets (and geometric configurations) for 1, 2, 3, 4,... equations in 3 
unknowns?


