
Syllabus for Math 2250-004 Di↵erential Equations and Linear Algebra
Spring 2018

Instructor Professor Nick Korevaar
email korevaar@math.utah.edu
o�ce LCB 204, 801.581.7318
o�ce hours M 2:00-3:00 p.m. LCB 204, T 4:30-6:00 location TBA, and by appointment. Also available

after class (briefly).
Lecture MTWF 10:45-11:35 a.m. MWF in WEB L105, T in JWB 335

Laboratory sections with Dihan Dai, dai@math.utah.edu
2250-005 H 10:45-11:35 a.m. LCB 219
2250-006 H 9:40-10:30 a.m. AEB 310

with Jose Yanez, yanez@math.utah.edu
2250-015 H 10:45-11:35 a.m. JWB 308
2250-016 H 9:40-10:30 a.m. JWB 308

Course websites

Daily lecture notes and weekly homework assignments will be posted on our public home page.
http://www.math.utah.edu/⇠korevaar/2250spring18

There are blank spaces in the notes where we will work out examples and fill in details together. Research
has shown that class attendance with active participation - including problem solving and writing notes by
hand - are e↵ective ways to learn class material, for almost everyone. Passively watching a lecture is not
usually e↵ective. Class notes will be posted at least several days before we use them, so that you have ample
time to print them out. Printing for math classes is free in the Math Department Rushing Student Center, in
the basement of LCB. There will often be additional class discussion related to homework and lab problems.

Grades and exam material will be posted on our CANVAS course page; access via Campus Information
Systems.

Grades will be posted on our CANVAS course page; access via Campus Information Systems.

Textbook Linear Algebra and Di↵erential Equations: with Introductory Partial Di↵erential Equations,
by Edwards, Penney, and Haberman, a custom-printed textbook for the University of Utah: (ISBN: 13-
9781269425575)

This text is a hybrid of the three texts: Di↵erential Equations and Linear Algebra 3rd Edition, by Edwards
and Penney; Applied Partial Di↵erential Equations with Fourier Series and Boundary Value Problems, 5th
edition, by Haberman; Elementary Linear Algebra, by Edwards and Penney. You should buy this version of
the text if you plan to take the 4th semester in the new engineering math sequence, Math 3140, or the PDE
course Math 3150, soon.

If your math courses will terminate with Math 2250, then the 3rd or 4th editions of the Di↵erential
Equations and Linear Algebra text by Edwards-Penney will su�ce:

Di↵erential Equations and Linear Algebra (4th Edition) (978-0134497181) brand new this year;
Di↵erential Equations and Linear Algebra (3rd Edition) (978-0136054252) will go out of print at some

point.

Final Exam logistics: Thursday April 27, 10:30 a.m.-12:30 p.m., in our MWF classroom WEB L105. This
is the University scheduled time and location.

Catalog description for Math 2250: This is a hybrid course which teaches the allied subjects of linear
algebra and di↵erential equations. These topics underpin the mathematics required for most students in the
Colleges of Science, Engineering, Mines & Earth Science.

Prerequisites: Math 1210-1220 or 1310-1320 (or 1250-1260 or 1311-1321, i.e. single-variable calculus.) You
are expected to have learned about vectors and parametric curves in one of these courses, or in Math 2210 or
or Physics 2210 or 3210. Practically speaking, you are better prepared for this course if you’ve had elements
of multivariable calculus in courses such as 1320, 1321, or 2210 and if your grades in the prerequisite courses
were above the ”C” level.
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Grading

Math 2250-004 is graded on a curve. note: In order to receive a grade of at least “C” in the course you
must earn a grade of at least “C” on the final exam. To see historical distributions of grades in my Math
2250 classes you can look at my old course home pages, on the exam pages.

Details about the content of each assignment type, and how much they count towards your final grade
are as follows:

• Homework (10%): Homework from roughly three textbook sections is due every Wednesday at the
beginning of class, based on lecture sections covered through the preceding Tuesday. All assignments
will be posted on our public page, the Wednesday before they are due. Several problems per section will
be randomly selected for grading. Two of a student’s lowest homework scores will be dropped. Only
hard-copy assignments will be accepted—no digital copies—and no late homework will be accepted.

• Quizzes (10%): At the end of most Wednesday classes, a short 1-2 problem quiz will be given, taking
roughly 10 minutes to do. The quiz will cover relevant topics from the week’s lectures, homework, and
lab section work. Two of a student’s lowest quiz scores will be dropped. There are no makeup quizzes.
You will be allowed and encouraged to work together on these quizzes.

• Midterm exams (30%): Two class-length midterm exams will be given, On Friday February 16 and
Friday March 30. Review for the exams will occur either in lecture or in the lab sections, in the days
before the exams. No midterm scores are dropped.

• Final exam (30%): A two-hour comprehensive exam will be given at the end of the semester. As with
the midterms, a practice final will be posted. Please check the final exam time, which is the o�cial
University scheduled time. It is your responsibility to make yourself available for that time, so make
any arrangements (e.g., with your employer) as early as possible.

• Lab (20%): Every week a Teaching Assistant (TA) -directed lab section will be held. In lab, the TA will
hand out problem worksheets and will facilitate student-led group work. The worksheet problems will
provide guided practice with both basic methods, as well as longer in-depth problems with physical and
engineering applications. Completed lab assignments will be due at the start of the following week’s
lab class. Credit will be given for both lab attendance and completed worksheets. Students should
expect that worksheets will take additional time outside of lab to finish completely. None of the lab
worksheet grades will be dropped. The TA’s will be available for additional o�ce hours.

Strategies for success

• Attend class and lab regularly.

• Read or skim the relevant text book sections and lecture note outlines before you attend class.

• Ask questions and become involved.

• Plan to do homework daily; try homework on the same day that the material is covered in lecture; do
not wait until just before homework and lab reports are due to begin serious work.

• Form study groups with other students.

Students with disabilities

The University of Utah seeks to provide equal access to its programs, services and activities for people
with disabilities. If you will need accommodations in the class, reasonable prior notice needs to be given to
the Center for Disability Services, 162 Olpin Union Building, 581-5020 (V/TDD). CDS will work with you
and the instructor to make arrangements for accommodations. All information in this course can be made
available in alternative format with prior notification to the Center for Disability Services.
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Learning Objectives for 2250

The goal of Math 2250 is to master the basic tools and problem solving techniques important in di↵erential
equations and linear algebra. These basic tools and problem solving skills are described below.

The essential topics

Be able to model dynamical systems that arise in science and engineering, by using general principles
to derive the governing di↵erential equations or systems of di↵erential equations. These principles include
linearization, compartmental analysis, Newton’s laws, conservation of energy and Kircho↵’s law.

Learn solution techniques for first order separable and linear di↵erential equations. Solve initial value
problems in these cases, with applications to problems in science and engineering. Understand how to
approximate solutions even when exact formulas do not exist. Visualize solution graphs and numerical
approximations to initial value problems via slope fields. Understand phase diagram analysis for autonomous
first order di↵erential equations.

Become fluent in matrix algebra techniques, in order to be able to compute the solution space to linear
systems and understand its structure; by hand for small problems and with technology for large problems.

Be able to use the basic concepts of linear algebra such as linear combinations, span, independence, basis
and dimension, to understand the solution space to linear equations, linear di↵erential equations, and linear
systems of di↵erential equations.

Understand the natural initial value problems for first order systems of di↵erential equations, and how
they encompass the natural initial value problems for higher order di↵erential equations and general systems
of di↵erential equations.

Learn how to solve constant coe�cient linear di↵erential equations via superposition, particular solutions,
and homogeneous solutions found via characteristic equation analysis. Apply these techniques to understand
the solutions to the basic unforced and forced mechanical and electrical oscillation problems.

Learn how to use Laplace transform techniques to solve linear di↵erential equations, with an emphasis
on the initial value problems of mechanical systems, electrical circuits, and related problems.

Be able to find eigenvalues and eigenvectors for square matrices. Apply these matrix algebra concepts to
find the general solution space to first and second order constant coe�cient homogeneous linear systems of
di↵erential equations, especially those arising from compartmental analysis and mechanical systems.

Understand and be able to use linearization as a technique to understand the behavior of nonlinear
dynamical systems near equilibrium solutions. Apply these techniques to non-linear mechanical oscillation
problems. (Additional material, subject to time availability: Apply linearization to autonomous systems
of two first order di↵erential equations, including interacting populations. Relate the phase portraits of
non-linear systems near equilibria to the linearized data, in particular to understand stability.)

Develop your ability to communicate modeling and mathematical explanations and solutions, using tech-
nology and software such as Maple, Matlab or internet-based tools as appropriate.
Problem solving fluency

Students will be able to read and understand problem descriptions, then be able to formulate equations
modeling the problem usually by applying geometric or physical principles. Solving a problem often requires
specific solution methods listed above. Students will be able to select the appropriate operations, execute
them accurately, and interpret the results using numerical and graphical computational aids.

Students will also gain experience with problem solving in groups. Students should be able to e↵ectively
transform problem objectives into appropriate problem solving methods through collaborative discussion.
Students will also learn how to articulate questions e↵ectively with both the instructor and TA, and be able
to e↵ectively convey how problem solutions meet the problem objectives.
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Week-by-Week Topics Plan

Topic schedule is subject to slight modifications as the course progresses, but exam dates are fixed.

Week 1: 1.1-1.4; di↵erential equations, mathematical models, integral as general and particular solutions, slope
fields, separable di↵erential equations.

Week 2: 1.4-1.5, EP 3.7, 2.1-2.2; separable equations cont., linear di↵erential equations, circuits, mixture models,
population models,equilibrium solutions and stability.

Week 3: 2.2-2.4; equilibrium solutions and stability cont., acceleration-velocity models, numerical solutions.

Week 4: 2.5-2.6, 3.1; numerical solutions cont., linear systems.

Week 5: 3.1-3.4; linear systems, matrices, Gaussian elimination, reduced row echelon form, matrix operations.

Week 6: 3.5-3.6; matrix inverses, determinants, review; Midterm exam 1 on Friday February 16 covering
material from weeks 1-6.

Week 7: 4.1-4.3; vector spaces, linear combinations in Rn, span and independence, subspaces, bases and dimen-
sion.

Week 8: 4.4, 5.1-5.3; second-order linear DEs, general solutions, superposition, homogeneity and constant coef-
ficients.

Week 9: 5.3-5.5; mechanical vibrations, pendulum model, particular solutions to non-homogeneous problems.

Week 10: 5.5-5.6, EP 3.7; forced oscillations and associated physical phenomena.practical resonance Laplace
transforms, solving IVPs with transforms, partial fractions and translations.

Week 11: 10.1-3; Laplace transforms, solving IVPs with transforms, partial fractions and translations. Midterm

exam 2 on Friday March 30 covering material from weeks 7-11.

Week 12: 10.4-10.5, EP 7.6, 6.1-6.2 Unit steps, convolutions, impulse function forcing; eigenvalues, eigenvectors
and diagonalizability.

Week 13: 6.1-6.2 continued; 7.1-7.3; first order systems of di↵erential equations; framework for di↵erential equa-
tions in which every DE is equivalent to a first order system of DE’s. Matrix systems of DEs

Week 14: 7.3-7.4; solution algorithms and applications for first and second order systems of di↵erential equations;
input-output modeling and mechanical systems.

Week 15: 7.3-7.4 continued, and review. Final exam Friday April 27, 10:30 a.m. - 12:30 p.m. in

classroom WEB L105. This is the University scheduled time.
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Math 2250-004  Week 1 notes

We will not necessarily finish the material from a given day's notes on that day.  Or on an amazing day we 
may get farther than I've predicted.  We may also add or subtract some material as the week progresses, but
these notes represent an outline of what we will cover.  These week 1 notes are for sections 1.1-1.3, with 
hints of 1.4.

Monday January 8:  
          Course Introduction
          1.1:  differential equations and initial value problems
         also touching on
          1.3:  slope fields for first order differential equations
      

 Go over course information on syllabus and course homepage: 

 http://www.math.utah.edu/~korevaar/2250spring18

 Note that there is a quiz this Wednesday on the material we cover today and tomorrow, and that your 
first lab meeting is this Thursday.  Your first homework assignment will be due next Wednesday, January 
17.  

Then, let's begin!
 What is an nth order differential equation (DE)?

     any equation involving a function y = y x  and its derivatives, for which the highest derivative 
appearing in the equation is the nth one, y n x  ; i.e. any equation which can be written as

F x, y x , y x , y x ,...y n x = 0.   

Exercise 1:  Which of the following are differential equations?  For each DE determine the order.
a) For y = y x ,   y x 2 sin y x = 0  

b)  For x = x t ,   x t = 3 x t 10 x t  .

c)  For x = x t ,    x = 3 x 10 x  .

d)  For z = z r ,   z r 4 z r  .

e)  For y = y x ,  y = y2 .



Definition:  A solution function y x  to a first order differential equation F x, y, y = 0  on the interval I 
is any function y x  which, when substituted into the differential equation, yields a true identity.

Definition:  If the solution function also satisifies y x0 = y0 for a specified x0 I and y0 , then 
y x  is called a solution to the initial value problem (IVP) 

F x, y, y = 0

y x0 = y0
.

Exercise 2:  Consider the differential equation 
dy
dx

= y2  from (1e). 

2a)  Show that functions y x =
1

C x
 solve the DE (on any interval not containing the constant C).

2b)  Find the appropriate value of C in the collection of solution functions y x =
1

C x
 in order to solve

the initial value problem
y = y2

y 1 = 2 .



2c)  What is the largest interval on which your solution to (b) is defined as a differentiable function?  Why?
 

2d)  Do you expect that there are any other solutions to the IVP in 2b?  Hint:  The graph of the IVP 
solution function we found is superimposed onto a "slope field" below:  The line segments at points 
x, y  have values y2, because solutions graphs to the differential equation

y = y2 

will have slopes given by the derivatives of the solutions y x .  This might give you some intuition about 
whether you expect more than one solution to the IVP.



2e)  Where did the solution functions  y x =
1

C x
 for the differential equation 

y = y2 
come from?  Many of you learned how to find solutions to "separable'" differential equations in a previous
Calculus class.  (Section 1.4 of the text is a review of separable differential equations.)  Let's see if we can 
use the method of substitution from integration theory to see where those solution functions came from.



Math 2250-004 
Tues Jan 9
       Course introduction, continued with an example
       1.2  Differential equations that can be solved by direct antidifferentiation

Announcements: 

Warm-up Exercise:



 important course goals:  understand some of the key differential equations which arise in modeling 
real-world dynamical systems from science, mathematics, engineering; how to find the solutions to these 
differential equations if possible; how to understand properties of the solution functions (sometimes even 
without formulas for the solutions) in order to effectively model or to test models for dynamical systems.
     In fact, you've encountered differential equations in previous mathematics and/or physics classes:

1st order differential equations:  rate of change of function depends in some way on the function value, 
the variable value, and nothing else.  For example, you've studied the population growth/decay differential 
equation for P = P t ,  and k a constant, given by

P t = k P t  
and having applications in biology, physics, finance.

2nd order DE's:  Newton's second law (change in momentum equals net forces) often leads to second 
order differential equations for particle position functions x = x t  in physics.  

The following exercise is an illustration of how modeling and differential equations tie together...

Exercise 1) Newton's law of cooling is a model for how objects are heated or cooled by the temperature of 
an ambient medium surrounding them.  In this model, the body temperature T = T t  changes at a rate 

proportional to to the difference between it and the ambient temperature A t  .  In the simplest models A is 
constant.

a)  Convert the description above into the differential equation for how the temperature of a heating or 
cooling object changes:

dT
dt

= k T A  .

b)  Would the differential equation have been correct if we wrote 
dT
dt

= k T A  instead?



c)  Find all solution functions to the Newton's law of cooling differential equation
dT
dt

= k T A .

using separation of variables or the method of substitution.

d)  Use the Newton's law of cooling model to partially solve a murder mystery:  At 3:00 p.m. a deceased 
body is found.  Its temperature is 70 F.  An hour later the body temperature has decreased to 60 .  It's 
been a winter inversion in SLC, with constant ambient temperature 30 .  Assuming the Newton's law 
model, estimate the time of death.  



Section 1.2:  differential equations equivalent to ones of the form
 y x = f x  

which we solve by direct antidifferentiation
y x = f x  dx = F x C.

Exercise 2   Solve the initial value problem
dy
dx

= x x2 4  

y 0 = 0



An important class of such problems arises in physics usually as velocity/acceleration problems via 
Newton's second law.  Recall that if  a particle is moving along a number line and if x t  is the particle
position function at time t , then the rate of change of x t  (with respect to t) namely x t , is the velocity
function.  If we write x t = v t  then the rate of change of velocity v t , namely v t , is called the
acceleration function a t , i.e.

 x t = v t = a t  .  

Thus if a t  is known, e.g. from Newton's second law that force equals mass times acceleration, then one 
can antidifferentiate once to find velocity, and one more time to find position.

Exercise 3:  

a)  If the units for position are meters m and the units for time are seconds s , what are the units for 
velocity and acceleration? (These are mks units.)

b)  Same question, if we use the English system in which length is measure in feet and time in seconds.  
Could you convert between mks units and English units?

Exercise 4:
Suppose the acceleration function is a negative constant a, 

x t = a . 

 (This could happen for vertical motion, e.g. near the earth's surface with a = g 9.8 
m
s2 32 

ft
s2  , as 

well as in other situations such as a car breaking with constant deceleration.)
Write x 0 = x0, v 0 = v0 for the initial position and velocity.  Find formulas for v t  and x t  .



Exercise 5:  A projectile with very low air resistance is fired almost straight up from the roof of a building 
30 meters high, with initial velocity 50 m/s.  Assume that the only acceleration of the object is from the 
force of gravity.  If its initial horizontal velocity is near zero, but large enough so that the object lands on 
the ground rather than the roof.

a)  Neglecting friction, how high will the object get above ground?
b)  When does the object land ?



Math 2250-004 
Wed Jan 10
        1.3  slope fields and differential equations
        Quiz today at end of class, on section 1.1-1.2 material

Announcements: 

Warm-up Exercise:



 Section 1.3: slope fields and graphs of differential equation solutions:  Consider the first order DE IVP 
for a function y x :

y = f x, y   , y x0 = y0 .
If y x  is a solution to this IVP and if we consider its graph y = y x , then the IC means the graph must 
pass through the point x0, y0 .  The DE means that at every point x, y  on the graph the slope of the 
graph must be f x, y .  (So we often call f x, y  the "slope function" for the differential equation.) This 
gives a way of understanding the graph of the solution y x  even without ever actually finding a formula 
for y x !   Consider a slope field near the point x0, y0 : at each nearby point x, y , assign the slope 
given by f x, y .  You can represent a slope field in a picture by using small line segments placed at 
representative points x, y , with the line segments having slopes f x, y  .  

Exercise 1:  Consider the differential equation 
dy
dx

= x 3, and then the IVP with y 1 = 2 .

a) Fill in (by hand) segments with representative slopes, to get a picture of the slope field for this DE, in 
the rectangle 0 x 5, 0 y 6 .  Notice that in this example the value of the slope field only depends
on x, so that all the slopes will be the same on any vertical line (having the same x-coordinate).  (In general,
curves on which the slope field is constant are called isoclines, since "iso" means "the same" and "cline" 
means inclination.)  Since the slopes are all zero on the vertical line for which x = 3, I've drawn a bunch of 
horizontal segments on that line in order to get started, see below.
b) Use the slope field to create a qualitatively accurate sketch for the graph of the solution to the IVP 
above, without resorting to a formula for the solution function y x .
c)  This is a DE and IVP we can solve via antidifferentiation.  Find the formula for y x  and compare its 
graph to your sketch in (b).

       



The procedure of drawing the slope field f x, y  associated to the differential equation y x = f x, y  can 
be automated.  And, by treating the slope field as essentially constant on small scales, i.e. using

y
x

dy
dx

= f x, y

one can make discrete steps in x and y, starting from the initial point x0, y0 . In this way one can 
approximate solution functions to IVPs, and their graphs.  You can find an applet to do this by googling 
"dfield"  (stands for "direction field", which is a synonym for slope field).  Here's a picture like the one we
sketched by hand on the previous page.  The solution graph was approximated using numerical ideas as 
above, and this numerical technique works for much more complicated differential equations, e.g. when 
solutions exist but don't have closed form formulas.  The program "dfield" was originally written for 
Matlab, and you can download a version to run inside that package.  Or, you can download stand-alone 
java code.



Exercise 2:  Consider the IVP
dy
dx

= y x

y 0 = 0 
a)  Check that y x = x 1 C ex gives a family of solutions to the DE C=const).  Notice that we 
haven't yet discussed a method to derive these solutions, but we can certainly check whether they work or 
not.

b)  Solve the IVP by choosing appropriate C.

c)  Sketch the solution by hand, for the rectangle 3 x 3, 3 y 3 .  Also sketch typical solutions
for several different C-values.  Notice that this gives you an idea of what the slope field looks like.  How 
would you attempt to sketch the slope field by hand, if you didn't know the general solutions to the DE?  
What are the isoclines in this case?
d)  Compare your work in (c) with the picture created by dfield on the next page.





Math 2250-004
Fri Jan 12
       1.3  slope fields and the existence-uniqueness theorem for initial value problems
       1.4  separable differential equations

Announcements: 

Warm-up Exercise:



1.3-1.4:  slope fields; existence and uniqueness for solutions to IVPs; examples we can check with 
separation of variables.

Exercise 1:  Consider the differential equation
dy
dx

= 1 y2 .

a)  Use separation of variables to find solutions to this DE...the "magic" algorithm that we talked about at 
the start of the week, but didn't explain the reasoning for.  It is de-mystified on the next page of today's 
notes.  

b)  Use the slope field below to sketch some solution graphs.  Are your graphs consistent with the 
formulas from a?  (You can sketch by hand, I'll use "dfield" on my browser.)
c)  Explain why each IVP has a solution, but this solution does not exist for all x.

You can download the java applet "dfield" from the URL
  http://math.rice.edu/~dfield/dfpp.html

(You also have to download a toolkit, following the directions there.)



1.4 Separable differential applications:  Important applications, as well as a lot of the examples we study in 
slope field discussions of section 1.3 are separable DE's.  So let's discuss precisely what they are, and why
the separation of variables algorithm works. 

Definition: A separable first order DE for a function y = y x  is one that can be written in the form:
dy
dx

= f x y  .

It's more convenient to rewrite this DE as
1
y

dy
dx

= f x ,      (as long as y 0) .

Writing g y =
1
y

  the differential equation reads

g y
dy
dx

= f x  .

Solution (math justified):  The left side of the modified differential equation is short for  g y x
dy
dx

.  

Even though we don't know the solution functions y x  yet, once we find them it will be true that they 
make this antidifferentiated identity true:

 g y x y x dx =  f x  dx.

And if  G y  is any antiderivative of g y , then this identity can be rewritten as
 G y x y x dx =  f x  dx.

By the chain rule (read backwards), the integrand on the left is nothing more than
d
dx

G y x .

So we can antidifferentiate both sides of the integral identity to get
G y x = f x  dx = F x C.

where F x  is any antiderivative of f x .  Thus solutions y x  to the original differential equation satisify

G y = F x C .

This expresses solutions y x  implicitly as functions of x .  You may be able to use algebra to solve this 
equation explicitly for y = y x  , and (working the computation backwards) y x  will be a solution to the 
DE.  (Even if you can't algebraically solve for y x  , this still yields implicitly defined solutions.)



Solution (differential magic): Treat 
dy
dx

 as a quotient of differentials dy, dx , and multiply and divide the 

DE to "separate" the variables:
dy
dx

=
f x
g y

 

g y dy = f x dx .
Antidifferentiate each side with respect to its variable (?!)

g y dy = f x dx , i.e.

G y C1 = F x C2  G y = F x C .    Agrees with "math-justified" implicit solutions.

This is the same differential magic that you used for the "method of substitution" in antidifferentiation, 
which was essentially the "chain rule in reverse" for integration techniques.



Exercise 2a)  Use separation of variables to solve the IVP

dy
dx

= y
2
3   

y 0 = 0
2b)  But there are actually a lot more solutions to this IVP!  (Solutions which don't arise from the 
separation of variables algorithm are called singular solutions.)  Once we find these solutions, we can 
figure out why separation of variables missed them.
2c)  Sketch some of these singular solutions onto the slope field below.



Here's what's going on (stated in 1.3 page 24 of text; partly proven in Appendix A.)
Existence - uniqueness theorem for the initial value problem
Consider the IVP

dy
dx

= f x, y  

y a = b 
  Let the point a, b  be interior to a coordinate rectangle ℛ : a1 x a2, b1 y b2 in the x y 

plane.
  Existence: If f x, y  is continuous in ℛ (i.e. if two points in ℛ are close enough, then the values of f at 

those two points are as close as we want).  Then there exists a solution to the IVP, defined on some 
subinterval J a1, a2  .

  Uniqueness: If the partial derivative function 
 y

 f x, y  is also continuous in ℛ, then for any 

subinterval a J0 J of x values for which the graph y = y x  lies in the rectangle, the solution is 
unique!

See figure below.  The intuition for existence is that if the slope field f x, y  is continuous, one can follow 
it from the initial point to reconstruct the graph.  The condition on the y-partial derivative of f x, y  turns 
out to prevent multiple graphs from being able to peel off.



Exercise 3:  Discuss how the existence-uniqueness theorem is consistent with our work in Wednesday's 
Exercises 1-2, and in today's Exercises 1-2 where we were able to find explicit solution formulas because 
the differential equations were actually separable.




