
Math 2250-004      
Week 10:  March 12-16  5.4-5.6   applications of linear differential equations, and solution techniques for 
non-homogeneous problems.            

Mon March 5:  
5.3 - 5.4  Review of characteristic equation method for homogeneous DE solutions, and the unforced 
mass-spring-damper application.

Announcements: 

Warm-up Exercise:



Review of characteristic equation algorithms... in section 5.4 our functions are usually x t , not y x  - 
don't let that trip you up.

Exercise 1)  Use the characteristic polynomial and the complex roots algorithm, to find a basis for the 
solution space of functions x t  that solve

x t 6 x t 13 x t = 0 .

Exercise 2)  Suppose a 7th order linear homogeneous DE has characteristic polynomial 

p r = r2 6 r 13
2

r 2 3 .

What is the general solution x t  to the corresponding homogeneous DE for x t ?



5.4:  Applications of  2nd order linear homogeneous DE's with constant coefficients, to unforced spring 
(and related) configurations.

In this section we study the differential equation below for functions x t :
m x c x k x = 0 .

In section 5.4 we assume the time dependent external forcing function F t 0.  The expression for 
internal forces c x k x is a linearization model, about the constant solution x = 0, x = 0, for which the 
net forces must be zero.  Notice that c 0, k 0.  The actual internal forces are probably not exactly 
linear, but this model is usually effective when x t , x t  are sufficiently small.  k is called the Hooke's 
constant, and c is called the damping coefficient.



m x c x k x = 0 .

This is a constant coefficient linear homogeneous DE, so we try x t = er t and compute

L x m x c x k x = er t m r2 c r k = er t p r .

The different behaviors exhibited by solutions to this mass-spring configuration depend on what sorts of 
roots the characteristic polynomial p r  pocesses...

Case 1)  no damping (c = 0).  
m x k x = 0 

x
k
m

 x = 0 .

p r = r2 k
m

 ,

has roots

r2 =
k
m

     i.e.    r = i
k
m

  .

So the general solution is

x t = c1cos
k
m t c2sin

k
m t  .

We write 
k
m 0 and call 0 the natural angular frequency .  Notice that its units are radians per 

time.  We also replace the linear combination coefficients c1, c2 by A, B .  So, using the alternate letters, the 
general solution to 

x 0
2 x = 0

is 
x t = A cos 0 t B sin 0 t  .

It's worth learning to recognize the undamped DE, and the trigonometric solutions, as it's easy to 
understand why they are solutions and you can then skip the characteristic polynomial step.

Exercise 1a  Write down the general homogeneous solution x t  to the differential equation

x t 4 x t = 0.

1b)  What is the general solution to t  to

t 10 t  = 0.



The motion exhibited by the solutions

x t = A cos 0 t B sin 0 t  
to the undamped oscillator DE

x 0
2 x = 0

is called simple harmonic motion.  The reason for this name is that x t  can be rewritten in "amplitude-
phase form"  as

x t = C cos 0 t = C cos 0 t

 in terms of an amplitude  C 0 and a phase angle   (or in terms of a time delay ).  

To see why this is so, equate the two forms and see how the coefficients A, B, C and phase angle  must 
be related:

x t = A cos 0 t B sin 0 t  =  C cos 0 t  .

Exercise 2)  Use the addition angle formula cos a b = cos a cos b sin a sin b  to show that the
two expressions above are equal provided 

 A = C cos   
 B = C sin   .

So if C,  are given,  the formulas above determine A, B.  Conversely, if A, B are given then

C = A2 B2  
A
C

= cos , 
B
C

= sin  

determine C, .  These correspondences are best remembered using a diagram in the A B plane:



It is important to understand the behavior of the functions

A cos 0 t B sin 0 t = C cos 0t = C cos 0 t
and the standard terminology:

The amplitude C is the maximum absolute value of x t .  The phase angle  is the radians of  0t  on the 

unit circle, so that cos 0t  evaluates to 1.  The time delay  is how much the graph of C cos 0t  
is shifted to the right along the t axis in order to obtain the graph of x t .  Note that

0 = angular velocity    units:  radians/time

f = frequency = 0

2 
    units:  cycles/time

T = period =
2 

0

     units:  time/cycle.

simple harmonic motion 
time delay line - and its height is the amplitude
period measured from peak to peak or between 
intercepts
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the geometry of simple harmonic motion



Exercise 3)  A mass of 2 kg oscillates without damping on a spring with Hooke's constant k = 18 
N
m

 .  It 

is initially stretched 1 m from equilibrium, and released with a velocity of 
3
2

 
m
s

.  

3a)  Show that the mass' motion is described by x t   solving the initial value problem
x 9 x = 0

x 0 = 1 

x 0 =
3
2

 .

3b)  Solve the IVP in a, and convert x t  into amplitude-phase and amplitude-time delay form.  Sketch the 
solution, indicating amplitude, period, and time delay. Check your work with the Wolfram alpha output on 
the next page





Case 2:  Unforced mass-spring system with damping:   (This discussion is in Monday's notes but we'll 
likely need the start of Tuesday to finish it.)

   3 possibilities that arise when the damping coefficient c 0.  There are three cases, depending on the 
roots of the characteristic polynomial:

m x c x k x = 0 

x
c
m

 x
k
m

 x = 0  

rewrite as
x 2 p x 0

2
 x = 0.

(p =
c

2 m
, 0

2
=

k
m

.   The characteristic polynomial is 

r2 2 p r 0
2

= 0 
which has roots

r =
2 p 4 p2 4 0

2

2
= p p2

0
2

.  

Case 2a)  ( p2
0
2
 , or c2 4 m k )  underdamped .  Complex roots

r = p p2
0
2

= p i 1 

with 1 = 0
2

p2
0 , the undamped angular frequency.

x t = e p t A cos  1t B sin  1 t = e p tC cos  1t 1  .

     solution decays exponentially to zero, but oscillates infinitely often, with exponentially decaying
pseudo-amplitude e p tC and pseudo-angular frequency 1, and pseudo-phase angle 1 .



r2 2 p r 0
2

= 0 
which has roots

r =
2 p 4 p2 4 0

2

2
= p p2

0
2

.

Case 2b)  ( p2
0
2
 , or c2 4 m k ). overdamped.  In this case we have two negative real roots

r1 = p p2
0
2

0 

r1 r2 = p p2
0
2

0 
and 

x t = c1e
r

1
 t

c2 e
r

2
 t

= e
r

2
 t

c1e
r

1
r

2
 t

c2  .
   solution converges to zero exponentially fast;  solution passes through equilibrium location x = 0 at 

most once.

Case 2c)   ( p2 = 0
2
 , or c2 = 4 m k ) critically damped.  Double real root r1 = r2 = p =

c
2 m

 .

x t = e p t c1 c2 t  .
     solution converges to zero exponentially fast, passing through x = 0 at most once, just like in the 

overdamped case.  The critically damped case is the transition between overdamped and underdamped:



Exercise 4)  Classify (underdamped, overdamped, critically damped),  by finding the roots of the 
characteristic polynomial.  Write down the general solution.  Could you solve the IVP for  x t  ?
4a)  

x 6 x 9 x = 0
x 0 = 1 

x 0 =
3
2

 .

4b)  
x 10 x 9 x = 0

x 0 = 1 

x 0 =
3
2

 .

4c)  
x 2 x 9 x = 0

x 0 = 1 

x 0 =
3
2

 .



The same initial displacement and velocity, and mass and spring constant - for an undamped, 
underdamped, overdamped, and critically damped mass-spring problem:  (Courtesy Wolfram alpha).



Tues March 13: 
5.4-5.5  Finish Monday's notes on 5.4, Then begin 5.5:  Finding yP for non-homogeneous linear 
differential equations

L y = f 
(so that you can use the general solution y = yP yH to solve initial value problems).  We're back to 
y = y x  in this section...

Announcements: 

Warm-up Exercise:



Section 5.5:  Finding yP for non-homogeneous linear differential equations
L y = f 

(so that you can use the general solution y = yP yH to solve initial value problems).  In this section the 
text switches back to y = y x , from x = x t .

There are two methods we will use:

   The method of undetermined coefficients uses guessing algorithms, and works for constant coefficient 
linear differential equations with certain classes of functions f x  for the non-homogeneous term. The 
method seems magic, but actually relies on vector space theory.  We've already seen simple examples of 
this, where we seemed to pick particular solutions out of the air. This method is the main focus of section
5.5.

    The method of variation of parameters is more general, and yields an integral formula for a particular 
solution yP , assuming you are already in possession of a basis for the homogeneous solution space.  This 
method has the advantage that it works for any linear differential equation and any (continuous) function f .
 It has the disadvantage that the formulas can get computationally messy especially for differential 
equations of order n 2 .  We'll study the case n = 2 only.

The easiest way to explain the method of undetermined coefficients is with examples.  

Roughly speaking, you make a "guess" with free parameters (undetermined coefficients) that "looks like" 
the right side.  AND, you need to include all possible terms in your guess that could arise when you apply 
L to the terms you know you want to include.  

We'll make this more precise later in the notes.

Exercise 1)   Find a particular solution yP x  for the differential equation
L y y 4 y 5 y = 10 x 3 .

Hint:  try yP x = d1x d2  because L transforms such functions into ones of the form b1 x b2 .  d1, d2 
are your "undetermined coefficients", for the given right hand side coefficients b1 = 10, b2 = 3.



Exercise 2)  Use your work in 1 and your expertise with homogeneous linear differential equations to find 
the general solution to 

y 4 y 5 y = 10 x 3 

Exercise 3)  Find a particular solution to 
L y = y 4 y 5 y = 14 e2 x .

Hint: try yP = d e2 x because L transforms functions of that form into ones of the form b e2 x, i.e.   

L d e2 x = b e2 x . "d " is your "undetermined coefficient" for b = 14.



Exercise 4a)   Use superposition (linearity of the operator L ) and your work from the previous exercises 
to find the general solution to

L y = y 4 y 5 y = 14 e2 x 20 x 6 .
4b)  Solve (or at least set up the problem to solve) the initial value problem

y 4 y 5 y = 14 e2 x 20 x 6 
y 0 = 4 

y 0 = 4 .



4c)  Check your answer with technology.



Exercise 5)  Find a particular solution to 
L y y 4 y 5 y = 2 cos 3 x  .

Hint:  To solve L y = f we hope that f is in some finite dimensional subspace V that is preserved by L, i.e.
L : V V .  
   In Exercise 1  V = span 1, x   and so we guessed yP = d1 d2 x.  

   In Exercise 3  V = span e2 x  and so we guessed yP = d e2 x.
   What's the smallest subspace V we can take in the current exercise?  Can you see why  

V = span cos 3 x  and a guess of yP = d cos 3 x   won't work?





All of the previous exercises rely on:

Method of undetermined coefficients (base case): If you wish to find a particular solution yP , i.e. 
L yP = f and if the non-homogeneous term f is in a finite dimensional subspace V with the properties that
(i)    L : V V , i.e. L transforms functions in V into functions which are also in V; and
(ii)  The only function g V for which L g = 0 is g = 0.  

Then there is always a unique yP V with L yP = f . 

why:  We already know this fact is true for matrix transformations L x = An nx  with L : n n 
(because if the only homogeneous solution is x = 0 then A reduces to the identity, so also each matrix 
equation A x = b has a unique solution x. The theorem above is a generalization of that fact to general linear
transformations.  There is an "appendix" explaining this at the end of today's notes, for students who'd like
to understand the details.

Exercise 6)  Use the method of undetermined coefficients to guess the form for a particular solution yP x  
for a constant coefficient differential equation 

L y y n an 1y n 1 ... a1 y a0 y = f    
(assuming the only such solution in your specified subspace that would solve the homogeneous DE is the 
zero solution):

6a)  L y = x3 6 x 5  

6b)  L y = 4 e2 xsin 3 x  

6c)  L y = x cos 2 x  

y '' x 4 y ' x 5 y x = x cos 2 x



Wed March 14: 
5.5:  Finding yP for non-homogeneous linear differential equations, continued.  Introduction of 5.6:  forced
oscillation problems, to get ready for lab.

L y = f 
(so that you can use the general solution y = yP yH to solve initial value problems).

Announcements: 

Warm-up Exercise:



On Tuesday we discussed the base case of undetermined coefficients:

Method of undetermined coefficients (base case): If you wish to find a particular solution yP , i.e. 
L yP = f and if the non-homogeneous term f is in a finite dimensional subspace V with the properties that
(i)    L : V V , i.e. L transforms functions in V into functions which are also in V; and
(ii)  The only function g V for which L g = 0 is g = 0.  

Then there is always a unique yP V with L yP = f . 

why:  We already know this fact is true for matrix transformations L x = An nx  with L : n n 
(because if the only homogeneous solution is x = 0 then A reduces to the identity, so also each matrix 
equation A x = b has a unique solution x. The theorem above is a generalization of that fact to general linear
transformations.  There is an "appendix" explaining this at the end of today's notes, for students who'd like
to understand the details.

Exercise 1)  Use the method of undetermined coefficients to guess the form for a particular solution yP x  
for a constant coefficient differential equation 

L y y n an 1y n 1 ... a1 y a0 y = f    
(assuming the only such solution in your specified subspace that would solve the homogeneous DE is the 
zero solution):

1a)  L y = x3 6 x 5  

1b)  L y = 4 e2 xsin 3 x  

1c)  L y = x cos 2 x  



BUT LOOK OUT
Exercise 2a)  Find a particular solution to 

y 4 y 5 y = 4 ex .
Hint:  since yH = c1ex c2e 5 x , a guess of yP = a ex will not work (and span ex  does not satisfy the 
"base case" conditions for undetermined coefficients).  Instead try

yP = d x ex 

and factor L = D2 4 D 5 = D 5 D 1  .

2b)  check work with technology



A vector space theorem like the one for the base case, except for L : V W, combined with our 
understanding of how to factor constant coefficient differential operators (as in lab you're working on this 
week for homogeneous DE's) leads to an extension of the method of undetermined coefficients, for right 
hand sides which can be written as sums of functions having the indicated forms below.  See the 
discussion in pages 341-346 of the text, and the table on page 346, reproduced here.
  
Method of undetermined coefficients (extended case):  Finding yP for non-homogeneous linear differential 
equations

L y = f 

If L has a factor D r s and er x is also associated with (a portion of) the right hand side f x  then the 
corresponding guesses you would have made in the "base case" need to be multiplied by xs , as in Exercise
2.  (This is like your current lab problem, and if you understand that, you have an inkling of why this 
recipe works.  On the other hand, if you don't understand that problem, there's another one this week so 
you get a second chance.  :-)  )  You may also need to use superposition, as in our earlier exercises, if 
different portions of f x  are associated with different exponential functions.

Extended case of undetermined coefficients

f x  yP s 0 when p r  
has these roots:

Pm x = b0 b1  ...  bmxm xs c0 c1x c2x2  ...  cmxm  r = 0 

b1 cos  x  b2 sin  x  xs c1cos  x c2sin  x  r = i  

ea x b1 cos  x  b2 sin  x  xsea x c1 cos  x  c2 sin  x  r = a i  

b0ea x xsc0ea x r = a

b0 b1  ...  bmxm ea x xs c0 c1x c2x2  ...  cmxm ea x r = a 



Exercise 3)  Set up the undetermined coefficients particular solutions for the examples below.  When 
necessary use the extended case to modify the undetermined coefficients form for yP .  Use technology to 
check if your "guess" form was right.

L y y n an 1y n 1 ... a1 y a0 y = f    

3a)  y 2 y = x2 6 x  
(So the characteristic polynomial for L y = 0 is r3 2 r2 = r2 r 2 = r 0 2 r 2 .)

3b)  y 4 y 13 y = 4 e2 xsin 3 x  
(So the characteristic polynomial for L y = 0 is 
r2 4 r 13 = r 2 2 9 = r 2 3 i r 2 3 i .)



3c)  y 5 y 4 y = 5 cos 2 x 4 ex 5e x.
(So the characteristic polynomial for L y = 0 is p r = r2 5 r 4 = r 4 r 1 .)



Variation of Parameters:  This is an alternate method for finding particular solutions.  Its advantage is that 
is always provides a particular solution, even for non-homogeneous problems in which the right-hand side
doesn't fit into a nice finite dimensional subspace preserved by L, and even if the linear operator L  is not 
constant-coefficient. The formula for the particular solutions can be somewhat messy to work with, 
however, once you start computing.

Here's the formula:  Let y1 x , y2 x ,...yn x  be a basis of solutions to the homogeneous DE

L y y n pn 1 x y n 1 ... p1 x y p0 x y = 0 .
Then yp x = u1 x y1 x u2 x y2 x  ...  un x yn x  is a particular solution to

L y = f 
provided the coefficient functions (aka "varying parameters") u1 x , u2 x ,...un x  have derivatives 
satisfying the matrix equation

u1

u2

:

un

= W y1, y2,..., yn
1

0

0

:

f

  

where W y1, y2,..., yn  is the Wronskian matrix.

Here's how to check this fact when n = 2:  Write
yp = y = u1y1 u2y2 .

Thus
y = u1y1  u2y2 u1 y1 u2 y2  .

Set
u1 y1 u2 y2 = 0.

Then
y = u1y1  u2y2 u1 y1 u2 y2  .

Set
u1 y1 u2 y2 = f .

Notice that the two ...  equations are equivalent to the matrix equation
y1 y2

y1 y2

u1

u2
=

0

f
 

which is equivalent to the n = 2 version of the claimed condition for yp.  Under these conditions we 
compute

p0 y = u1y1 u2y2  
p1 y = u1y1  u2y2   

          1 y = u1y1  u2y2 f   
                      L y = u1L y1 u2L y2 f  

L y = 0 0 f = f  



Appendix:  The following two theorems justify the method of undetermined coefficients, in both the "base 
case" and the "extended case."  We will not discuss these in class, but I'll be happy to chat about the 
arguments with anyone who's interested, outside of class.  They only use ideas we've talked about already, 
although they are abstract.

Theorem 0:  
     Let V and W be vector spaces. Let V have dimension n  and let v1, v2, ..., vn  be a basis for V.
     Let L : V W be a linear transformation, i.e. L u v = L u L v  and L c u = c L u  holds 
u, v V, c .)  Consider the range of L, i.e. 

Range L L d1v1 d2v2  ... dn vn W, such that each dj  
= d1L v1 d2L v2  ... dnL  vn W, such that each dj

= span L v1 , L v2 , ... L vn .
Then Range L  is n dimensional if and only if the only solution to L v = 0 is v = 0.

proof:
   (i) ⇐: The only solution to L v = 0 is v = 0  implies Range L  is n dimensional:

If we can show L v1 , L v2 , ... L vn  are linearly independent, then they will be a basis for Range L  
and this subspace will have dimension n.  So, consider the dependency equation:

d1L v1 d2L v2  ... dnL  vn =0 .
Because L is a linear transformation, we can rewrite this equation as

L d1v1 d2v2  ... dn vn = 0.
Under our assumption that the only homogeneous solution is the zero vector, we deduce

d1v1 d2v2  ... dn vn = 0.
Since v1, v2, ..., vn are a basis they are linearly independent, so d1 = d2 =...= dn = 0 .

   (ii) ⇒: Range L  is n dimensional implies the only solution to L v = 0 is v = 0 :  Since the range of 
L is n dimensional,  L v1 , L v2 , ... L vn must be linearly independent. Now, let v = d1v1 d2v2

 ... dn vn be a homogeneous solution, L v = 0.  In other words,
L d1v1 d2v2  ... dn vn = 0  

d1L v1 d2L v2  ... dnL  vn =0  
d1 = d2 =...= dn = 0 v = 0 .

Theorem 1  Let Let V and W be vector spaces, both with the same dimension n . Let L : V W be a
linear transformation.  Let the only solution to  L v = 0 be v = 0.  Then for each w W there is a unique 
v V with L v = w .

proof:  By Theorem 0, the dimension of Range L  is n dimensional.  Therefore it must be all of W.  So 
for each w W there is at least one vP V with L vP = w .  But the general solution to L v = w is 
v = vP vH, where vH is the general solution to the homogeneous equation.  By assumption,  vH = 0, so the
particular solution is unique.



Remark:  In the base case of undetermined coefficients, W = V.  In the extended case, W is the space in 
which f lies, and V = xsW, i.e. the space of all functions which are obtained from ones in W by multiplying 
them by xs.  This is because if L factors as

L = D r
1
I

k
1 D r

2
I

k
2 ... D r

m
I

k
m

and if f is in a subspace W associated with the characteristic polynomial root rm, then for s = km the factor 

D r
m

I
k
m of L will transform the space V = xsW back into W, and not transform any non-zero function in

V into the zero function.  And the other factors of L will then preserve W, also without transforming any 
non-zero elements to the zero function.



Math 2250-004                            
Friday Mar 16           
     Section 5.6:  Forced mechanical vibrations.

Announcements: 

Warm-up Exercise:

 



Section 5.6:  forced oscillations in mechanical (and electrical) systems.  We will continue to discuss section
5.6 on the Monday after spring break.  Today we'll discuss what happens when there is no damping - 
c = 0.  We'll deal with the damped case after spring break.

But here is an Overview for all cases:
m x c x k x = F0 cos  t  

using section 5.5 undetermined coefficients algorithms.  

     undamped c = 0  :
     In this case the complementary homogeneous differential equation for x t  is

m x k x = 0

x
k
m

x = 0 

x 0
2
 x = 0 

     which has simple harmonic motion solutions xH t = C cos 0t  .  So for the non-
homongeneous DE the method of undetermined coefficients implies we can find particular and general 
solutions as follows:

          0
k
m

  xP = A cos  t    because only even derivatives, we don't need 

sin  t terms !!
             x = xP xH = A cos  t C0 cos 0t 0  .

          0 but 0, C C0  Beating!

          = 0                      xP = t A cos 0 t B sin 0 t    (Case II of undetermined 
coefficients.)

             x = xP xH = C t cos 0 t C0 cos 0t 0  .
("pure" resonance!)

...................................................................................
m x c x k x = F0 cos  t

     damped  c 0 :     in all cases  xP = A cos  t B sin  t = C cos  t  (because the 

roots of the characteristic polynomial are never i  when c 0 ).
          underdamped:         x = xP xH = C cos  t e p tC1cos 1t 1  .

          critically-damped:  x = xP xH = C cos  t e p t c1t c2  .

          over-damped:        x = xP xH = C cos  t c1e
r

1
 t

c2e
r

2
t
 .



> > 
> > 

          in all three damped cases on the previous page, xH t 0 exponentially and is called the transient 
solution xtr t  (because it disappears as t .  And in these damped cases   xP t  as above is called the
steady periodic solution xsp t   (because it is what persists as t , and because it's periodic).

          if c is small enough and 0 then the amplitude C of xsp t  can be large relative to 
F0

m
, and 

the system can exhibit practical resonance.  This can be an important phenomenon in electrical circuits, 
where amplifying signals is important.
 

forced undamped oscillations:
Exercise 1a)  Solve the initial value problem for x t :

x 9 x = 80 cos 5 t  
x 0 = 0 

x 0 = 0 .
1b)  This superposition of two sinusoidal functions is periodic because there is a common multiple of their 
(shortest) periods.  What is this (common) period?
1c)  Compare your solution and reasoning with the display at the bottom of this page. 

with plots :
plot1 plot 5 cos 5 t , t = 0 ..10, color = green, style = point :
 plot2 plot 5 cos 3 t , t = 0 ..10, color = blue, style = point :
 plot3 plot 5 cos 5 t 5 cos 3 t , t = 0 ..10, color = black :
 display plot1, plot2, plot3 , title ='superposition ' ;

t
2 4 6 8 10

6

0

8
superposition



In general:  Use the method of undetermined coefficients to solve the initial value problem for x t , in the 

case 0 = k
m :

x t
k
m

x t =
F0

m
cos  t

x 0 = x0
x 0 = v0

Solution:  

x t =
F0

m
2

0
2 cos 0 t cos   t  x0cos 0 t

v0

0
sin 0t  

There is an interesting beating phenomenon for 0 (but still with 0).  This is explained 
analytically via trig identities, and is familiar to musicians in the context of superposed sound waves 
(which satisfy the homogeneous linear "wave equation" partial differential equation):

cos cos = cos cos sin sin            
                                     cos cos sin sin   

          = 2 sin sin   .

Set =
1
2 0 t,  =

1
2 0 t in the identity above, to rewrite the first term in x t  as a 

product rather than a difference:

x t =
F

0

m 2
0
2 2 sin

1
2 0 t sin

1
2 0 t x

0
cos 0t

v
0

0
sin 0t  .

In this product of sinusoidal functions, the first one has angular frequency and period close to the original 
angular frequencies and periods of the original sum.  But the second sinusoidal function has small angular 
frequency and long period, given by

angular frequency: 
1
2 0 ,          period:  

4 

0

 .



> > 

We will call half that period the beating period, as explained by the next exercise:  

beating period:  
2 

0

 ,       beating amplitude:  
2 F0

m
2

0
2   .

Exercise 2a)  Use one of the formulas on the previous page to write down the IVP solution x t to
x 9 x = 80 cos 3.1 t  

x 0 = 0 
x 0 = 0 .

2b)  Compute the beating period and amplitude.  Compare to the graph shown below.

plot 262.3 sin 3.05 t sin .05 t , t = 0 ..100, color = black, title = `beating` ;

t
20 40 60 80 100

200

0

200
beating



Resonance:

You can also get this solution by letting 0 in the beating formula.  We will probably do it that way in 
class, on the next page.



in the case 0 =
k
m

 we copy the IVP solution in both forms, from previous page

x t
k
m

x t =
F0

m
cos  t

x 0 = x0
x 0 = v0

x t =
F0

m
2

0
2 cos 0t cos  t  x0cos 0t

v0

0

sin 0t  

x t =
F0

m
2

0
2 2 sin

1
2 0 t sin

1
2 0 t x0cos 0t

v0

0

sin 0t  .

If we let 0 this solution will converge to the resonance IVP solution on the previous page....



> > 

> > 

Exercise 3a)  Solve the IVP 
x 9 x = 80 cos 3 t  

x 0 = 0 
x 0 = 0 .

First just use the general solution formula above this exercise and substitute in the appropriate values for 
the various terms.  Then, if time, use variation of parameters (see the last pages of today's notes), to check 
a particular solution and to illustrate this alternate method for finding particular solutions.

3b)  Compare the solution graph below with the beating graph in exercise 2.

plot
40
3 t sin 3  t , t = 0 ..40, color = black, title = `resonance` ;

t
10 20 30 40

400

0

400
resonance



    After finishing the discussion of undamped forced oscillations, we will discuss the physics and 
mathematics of damped forced oscillations

m x c x k x = F0 cos  t  .

Here are some links which address how these phenomena arise, also in more complicated real-world 
applications in which the dynamical systems are more complex and have more components.  Our baseline 
cases are the starting points for understanding these more complicated systems. We'll also address some of
these more complicated applications when we move on to systems of differential equations, in a few 
weeks.

http://en.wikipedia.org/wiki/Mechanical_resonance   (wikipedia page with links)
http://www.nset.org.np/nset/php/pubaware_shaketable.php  (shake tables for earthquake modeling)

http://www.youtube.com/watch?v=M_x2jOKAhZM  (an engineering class demo shake table)
http://www.youtube.com/watch?v=j-zczJXSxnw   (Tacoma narrows bridge)
http://en.wikipedia.org/wiki/Electrical_resonance  (wikipedia page with links)

http://en.wikipedia.org/wiki/Crystal_oscillator  (crystal oscillators)


