
Math 2250-004  Week 1 notes

We will not necessarily finish the material from a given day's notes on that day.  Or on an amazing day we 
may get farther than I've predicted.  We may also add or subtract some material as the week progresses, but
these notes represent an outline of what we will cover.  These week 1 notes are for sections 1.1-1.3, with 
hints of 1.4.

Monday January 8:  
          Course Introduction
          1.1:  differential equations and initial value problems
         also touching on
          1.3:  slope fields for first order differential equations
      

 Go over course information on syllabus and course homepage: 

 http://www.math.utah.edu/~korevaar/2250spring18

 Note that there is a quiz this Wednesday on the material we cover today and tomorrow, and that your 
first lab meeting is this Thursday.  Your first homework assignment will be due next Wednesday, January 
17.  

Then, let's begin!
 What is an nth order differential equation (DE)?

     any equation involving a function y = y x  and its derivatives, for which the highest derivative 
appearing in the equation is the nth one, y n x  ; i.e. any equation which can be written as

F x, y x , y x , y x ,...y n x = 0.   

Exercise 1:  Which of the following are differential equations?  For each DE determine the order.
a) For y = y x ,   y x 2 sin y x = 0  

b)  For x = x t ,   x t = 3 x t 10 x t  .

c)  For x = x t ,    x = 3 x 10 x  .

d)  For z = z r ,   z r 4 z r  .

e)  For y = y x ,  y = y2 .



Definition:  A solution function y x  to a first order differential equation F x, y, y = 0  on the interval I 
is any function y x  which, when substituted into the differential equation, yields a true identity.

Definition:  If the solution function also satisifies y x0 = y0 for a specified x0 I and y0 , then 
y x  is called a solution to the initial value problem (IVP) 

F x, y, y = 0

y x0 = y0
.

Exercise 2:  Consider the differential equation 
dy
dx

= y2  from (1e). 

2a)  Show that functions y x =
1

C x
 solve the DE (on any interval not containing the constant C).

2b)  Find the appropriate value of C in the collection of solution functions y x =
1

C x
 in order to solve

the initial value problem
y = y2

y 1 = 2 .



2c)  What is the largest interval on which your solution to (b) is defined as a differentiable function?  Why?
 

2d)  Do you expect that there are any other solutions to the IVP in 2b?  Hint:  The graph of the IVP 
solution function we found is superimposed onto a "slope field" below:  The line segments at points 
x, y  have values y2, because solutions graphs to the differential equation

y = y2 

will have slopes given by the derivatives of the solutions y x .  This might give you some intuition about 
whether you expect more than one solution to the IVP.



2e)  Where did the solution functions  y x =
1

C x
 for the differential equation 

y = y2 
come from?  Many of you learned how to find solutions to "separable'" differential equations in a previous
Calculus class.  (Section 1.4 of the text is a review of separable differential equations.)  Let's see if we can 
use the method of substitution from integration theory to see where those solution functions came from.



Math 2250-004 
Tues Jan 9
       Course introduction, continued with an example
       1.2  Differential equations that can be solved by direct antidifferentiation

Announcements: 

Warm-up Exercise:



 important course goals:  understand some of the key differential equations which arise in modeling 
real-world dynamical systems from science, mathematics, engineering; how to find the solutions to these 
differential equations if possible; how to understand properties of the solution functions (sometimes even 
without formulas for the solutions) in order to effectively model or to test models for dynamical systems.
     In fact, you've encountered differential equations in previous mathematics and/or physics classes:

1st order differential equations:  rate of change of function depends in some way on the function value, 
the variable value, and nothing else.  For example, you've studied the population growth/decay differential 
equation for P = P t ,  and k a constant, given by

P t = k P t  
and having applications in biology, physics, finance.

2nd order DE's:  Newton's second law (change in momentum equals net forces) often leads to second 
order differential equations for particle position functions x = x t  in physics.  

The following exercise is an illustration of how modeling and differential equations tie together...

Exercise 1) Newton's law of cooling is a model for how objects are heated or cooled by the temperature of 
an ambient medium surrounding them.  In this model, the body temperature T = T t  changes at a rate 

proportional to to the difference between it and the ambient temperature A t  .  In the simplest models A is 
constant.

a)  Convert the description above into the differential equation for how the temperature of a heating or 
cooling object changes:

dT
dt

= k T A  .

b)  Would the differential equation have been correct if we wrote 
dT
dt

= k T A  instead?



c)  Find all solution functions to the Newton's law of cooling differential equation
dT
dt

= k T A .

using separation of variables or the method of substitution.

d)  Use the Newton's law of cooling model to partially solve a murder mystery:  At 3:00 p.m. a deceased 
body is found.  Its temperature is 70 F.  An hour later the body temperature has decreased to 60 .  It's 
been a winter inversion in SLC, with constant ambient temperature 30 .  Assuming the Newton's law 
model, estimate the time of death.  



Section 1.2:  differential equations equivalent to ones of the form
 y x = f x  

which we solve by direct antidifferentiation
y x = f x  dx = F x C.

Exercise 2   Solve the initial value problem
dy
dx

= x x2 4  

y 0 = 0



An important class of such problems arises in physics usually as velocity/acceleration problems via 
Newton's second law.  Recall that if  a particle is moving along a number line and if x t  is the particle
position function at time t , then the rate of change of x t  (with respect to t) namely x t , is the velocity
function.  If we write x t = v t  then the rate of change of velocity v t , namely v t , is called the
acceleration function a t , i.e.

 x t = v t = a t  .  

Thus if a t  is known, e.g. from Newton's second law that force equals mass times acceleration, then one 
can antidifferentiate once to find velocity, and one more time to find position.

Exercise 3:  

a)  If the units for position are meters m and the units for time are seconds s , what are the units for 
velocity and acceleration? (These are mks units.)

b)  Same question, if we use the English system in which length is measure in feet and time in seconds.  
Could you convert between mks units and English units?

Exercise 4:
Suppose the acceleration function is a negative constant a, 

x t = a . 

 (This could happen for vertical motion, e.g. near the earth's surface with a = g 9.8 
m
s2 32 

ft
s2  , as 

well as in other situations such as a car breaking with constant deceleration.)
Write x 0 = x0, v 0 = v0 for the initial position and velocity.  Find formulas for v t  and x t  .



Exercise 5:  A projectile with very low air resistance is fired almost straight up from the roof of a building 
30 meters high, with initial velocity 50 m/s.  Assume that the only acceleration of the object is from the 
force of gravity.  If its initial horizontal velocity is near zero, but large enough so that the object lands on 
the ground rather than the roof.

a)  Neglecting friction, how high will the object get above ground?
b)  When does the object land ?



Math 2250-004 
Wed Jan 10
        1.3  slope fields and differential equations
        Quiz today at end of class, on section 1.1-1.2 material

Announcements: 

Warm-up Exercise:



 Section 1.3: slope fields and graphs of differential equation solutions:  Consider the first order DE IVP 
for a function y x :

y = f x, y   , y x0 = y0 .
If y x  is a solution to this IVP and if we consider its graph y = y x , then the IC means the graph must 
pass through the point x0, y0 .  The DE means that at every point x, y  on the graph the slope of the 
graph must be f x, y .  (So we often call f x, y  the "slope function" for the differential equation.) This 
gives a way of understanding the graph of the solution y x  even without ever actually finding a formula 
for y x !   Consider a slope field near the point x0, y0 : at each nearby point x, y , assign the slope 
given by f x, y .  You can represent a slope field in a picture by using small line segments placed at 
representative points x, y , with the line segments having slopes f x, y  .  

Exercise 1:  Consider the differential equation 
dy
dx

= x 3, and then the IVP with y 1 = 2 .

a) Fill in (by hand) segments with representative slopes, to get a picture of the slope field for this DE, in 
the rectangle 0 x 5, 0 y 6 .  Notice that in this example the value of the slope field only depends
on x, so that all the slopes will be the same on any vertical line (having the same x-coordinate).  (In general,
curves on which the slope field is constant are called isoclines, since "iso" means "the same" and "cline" 
means inclination.)  Since the slopes are all zero on the vertical line for which x = 3, I've drawn a bunch of 
horizontal segments on that line in order to get started, see below.
b) Use the slope field to create a qualitatively accurate sketch for the graph of the solution to the IVP 
above, without resorting to a formula for the solution function y x .
c)  This is a DE and IVP we can solve via antidifferentiation.  Find the formula for y x  and compare its 
graph to your sketch in (b).

       



The procedure of drawing the slope field f x, y  associated to the differential equation y x = f x, y  can 
be automated.  And, by treating the slope field as essentially constant on small scales, i.e. using

y
x

dy
dx

= f x, y

one can make discrete steps in x and y, starting from the initial point x0, y0 . In this way one can 
approximate solution functions to IVPs, and their graphs.  You can find an applet to do this by googling 
"dfield"  (stands for "direction field", which is a synonym for slope field).  Here's a picture like the one we
sketched by hand on the previous page.  The solution graph was approximated using numerical ideas as 
above, and this numerical technique works for much more complicated differential equations, e.g. when 
solutions exist but don't have closed form formulas.  The program "dfield" was originally written for 
Matlab, and you can download a version to run inside that package.  Or, you can download stand-alone 
java code.



Exercise 2:  Consider the IVP
dy
dx

= y x

y 0 = 0 
a)  Check that y x = x 1 C ex gives a family of solutions to the DE C=const).  Notice that we 
haven't yet discussed a method to derive these solutions, but we can certainly check whether they work or 
not.

b)  Solve the IVP by choosing appropriate C.

c)  Sketch the solution by hand, for the rectangle 3 x 3, 3 y 3 .  Also sketch typical solutions
for several different C-values.  Notice that this gives you an idea of what the slope field looks like.  How 
would you attempt to sketch the slope field by hand, if you didn't know the general solutions to the DE?  
What are the isoclines in this case?
d)  Compare your work in (c) with the picture created by dfield on the next page.





Math 2250-004
Fri Jan 12
       1.3  slope fields and the existence-uniqueness theorem for initial value problems
       1.4  separable differential equations

Announcements: 

Warm-up Exercise:



1.3-1.4:  slope fields; existence and uniqueness for solutions to IVPs; examples we can check with 
separation of variables.

Exercise 1:  Consider the differential equation
dy
dx

= 1 y2 .

a)  Use separation of variables to find solutions to this DE...the "magic" algorithm that we talked about at 
the start of the week, but didn't explain the reasoning for.  It is de-mystified on the next page of today's 
notes.  

b)  Use the slope field below to sketch some solution graphs.  Are your graphs consistent with the 
formulas from a?  (You can sketch by hand, I'll use "dfield" on my browser.)
c)  Explain why each IVP has a solution, but this solution does not exist for all x.

You can download the java applet "dfield" from the URL
  http://math.rice.edu/~dfield/dfpp.html

(You also have to download a toolkit, following the directions there.)



1.4 Separable differential applications:  Important applications, as well as a lot of the examples we study in 
slope field discussions of section 1.3 are separable DE's.  So let's discuss precisely what they are, and why
the separation of variables algorithm works. 

Definition: A separable first order DE for a function y = y x  is one that can be written in the form:
dy
dx

= f x y  .

It's more convenient to rewrite this DE as
1
y

dy
dx

= f x ,      (as long as y 0) .

Writing g y =
1
y

  the differential equation reads

g y
dy
dx

= f x  .

Solution (math justified):  The left side of the modified differential equation is short for  g y x
dy
dx

.  

Even though we don't know the solution functions y x  yet, once we find them it will be true that they 
make this antidifferentiated identity true:

 g y x y x dx =  f x  dx.

And if  G y  is any antiderivative of g y , then this identity can be rewritten as
 G y x y x dx =  f x  dx.

By the chain rule (read backwards), the integrand on the left is nothing more than
d
dx

G y x .

So we can antidifferentiate both sides of the integral identity to get
G y x = f x  dx = F x C.

where F x  is any antiderivative of f x .  Thus solutions y x  to the original differential equation satisify

G y = F x C .

This expresses solutions y x  implicitly as functions of x .  You may be able to use algebra to solve this 
equation explicitly for y = y x  , and (working the computation backwards) y x  will be a solution to the 
DE.  (Even if you can't algebraically solve for y x  , this still yields implicitly defined solutions.)



Solution (differential magic): Treat 
dy
dx

 as a quotient of differentials dy, dx , and multiply and divide the 

DE to "separate" the variables:
dy
dx

=
f x
g y

 

g y dy = f x dx .
Antidifferentiate each side with respect to its variable (?!)

g y dy = f x dx , i.e.

G y C1 = F x C2  G y = F x C .    Agrees with "math-justified" implicit solutions.

This is the same differential magic that you used for the "method of substitution" in antidifferentiation, 
which was essentially the "chain rule in reverse" for integration techniques.



Exercise 2a)  Use separation of variables to solve the IVP

dy
dx

= y
2
3   

y 0 = 0
2b)  But there are actually a lot more solutions to this IVP!  (Solutions which don't arise from the 
separation of variables algorithm are called singular solutions.)  Once we find these solutions, we can 
figure out why separation of variables missed them.
2c)  Sketch some of these singular solutions onto the slope field below.



Here's what's going on (stated in 1.3 page 24 of text; partly proven in Appendix A.)
Existence - uniqueness theorem for the initial value problem
Consider the IVP

dy
dx

= f x, y  

y a = b 
  Let the point a, b  be interior to a coordinate rectangle ℛ : a1 x a2, b1 y b2 in the x y 

plane.
  Existence: If f x, y  is continuous in ℛ (i.e. if two points in ℛ are close enough, then the values of f at 

those two points are as close as we want).  Then there exists a solution to the IVP, defined on some 
subinterval J a1, a2  .

  Uniqueness: If the partial derivative function 
 y

 f x, y  is also continuous in ℛ, then for any 

subinterval a J0 J of x values for which the graph y = y x  lies in the rectangle, the solution is 
unique!

See figure below.  The intuition for existence is that if the slope field f x, y  is continuous, one can follow 
it from the initial point to reconstruct the graph.  The condition on the y-partial derivative of f x, y  turns 
out to prevent multiple graphs from being able to peel off.



Exercise 3:  Discuss how the existence-uniqueness theorem is consistent with our work in Wednesday's 
Exercises 1-2, and in today's Exercises 1-2 where we were able to find explicit solution formulas because 
the differential equations were actually separable.




