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5.3  Solving constant coefficient homogeneous linear differential equations: complex roots in the 
characteristic polynomial

Announcements: 

Warm-up Exercise:



Here's the general algorithm:  If
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This yields kj solutions for each root rj , so since  k1 k2 ... km = n you get a total of n solutions to 
the differential equation.  There's a good explanation in the text as to why these additional functions 
actually do solve the differential equation, see pages 316-318 and the discussion of "polynomial 
differential operators".  I've also made a homework problem in which you can explore these ideas.  Using 
the limiting method we discussed earlier, it's not too hard to show that all n of these solutions are indeed 
linearly independent, so they are in fact a basis for the solution space to L y = 0 .

Exercise 3)  Explicitly antidifferentiate to show that the solution space to the differential equation for y x  
y 4 y 3 = 0 

agrees with what you would get using the repeated roots algorithm in Case 2 above.  Hint: first find 
v = y , using v v = 0, then antidifferentiate three times to find yH.  When you compare to the repeated 

roots algorithm, note that it includes the possibility r = 0 and that e0 x = 1.

Case 3)  Complex number roots - this will be our surprising and fun topic on Friday.  Our analysis will 
explain exactly how and why trig functions and mixed exponential-trig-polynomial functions show up as 
solutions for some of the homogeneous DE's you worked with in your homework and lab for this past 
week.  This analysis depends on Euler's formula, one of the most beautiful and useful formulas in 
mathematics:

ei = cos  i sin
for i2 = 1.



5.3 continued. How to find the solution space for nth order linear homogeneous DE's with constant 
coefficients, and why the algorithms work.

Strategy:  In all cases we first try to find a basis for the n dimensional solution space made of or related to
exponential functions....trying y x = er x yields

L y = er x rn an 1r
n 1 ...  a1r a0 = er x p r  .

The characteristic polynomial p r  and how it factors are the keys to finding the solution space to 
L y = 0.  There are three cases, of which the first two (distinct and repeated real roots) are in yesterday's 
notes.

Case 3)  p r  has complex number roots.  This is the hardest, but also most interesting case.The punch 
line is that exponential functions er x still work, except that r = a b i ; but, rather than use those complex 
exponential functions to construct solution space bases we decompose them into real-valued solutions that 
are products of exponential and trigonometric functions.



To understand how this all comes about, we need to learn Euler's formula . This also lets us review some 
important Taylor's series facts from Calc 2.  As it turns out, complex number arithmetic and complex 
exponential functions actually are important in many engineering and science applications.

Recall the Taylor-Maclaurin formula from Calculus
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(Recall that the partial sum polynomial through order n  matches f and its first n derivatives at x0 = 0.  
When you studied Taylor series in Calculus you sometimes expanded about points other than x0 = 0.  You 
also needed error estimates to figure out on which intervals the Taylor polynomials actually coverged back 
to f .)

Exercise 1)  Use the formula above to recall the three very important Taylor series for

1a)  ex =   

1b)  cos x =   

1c)  sin x =    

In Calculus you checked that these series actually converge and equal the given functions, for all real 
numbers x.
Exercise 2)  Let x = i  and use the Taylor series for ex as the definition of ei  in order to derive Euler's 
formula:

ei = cos i sin  .



From Euler's formula it makes sense to define
ea b i eaeb i = ea cos b i sin b  

for a, b .  So for x  we also get

e a b i x = ea x cos b x i sin b x = ea xcos b x i ea xsin b x  .

For a complex function f x i g x  we define the derivative by

  Dx f x i g x f x i g x  .

It's straightforward to verify (but would take some time to check all of them) that the usual differentiation 
rules, i.e. sum rule, product rule, quotient rule, constant multiple rule, all hold for derivatives of complex 
functions.  The following rule pertains most specifically to our discussion and we should check it:

Exercise 3)  Check that Dx e
a b i x = a b i e a b i x , i.e. 

Dx e
r x = r er x  

even if r is complex.  (So also Dx
2 er x = Dxr e

r x = r2 er x, Dx
3 er x = r3 er x , etc.)



Now return to our differential equation questions, with 
L y y n an 1y

n 1 ... a1 y a0 y .

Then even for complex r = a b i   (a, b , our work above shows that

L er x = er x rn an 1r
n 1 ...  a1r a0 = er x p r  .

So if r = a b i is a complex root of p r  then er x is a complex-valued function solution to L y = 0.  
But L is linear, and because of how we take derivatives of complex functions, we can compute in this case 
that

0 0 i = L er x = L ea xcos b x i ea xsin b x  

= L ea xcos b x i L ea xsin b x  .

Equating the real and imaginary parts in the first expression to those in the final expression (because that's 
what it means for complex numbers to be equal) we deduce

0 = L ea xcos b x  
0 = L ea xsin b x  .

Upshot:  If r = a b i  is a complex root of the characteristic polynomial p r  then
y1 = ea xcos b x  

y2 = ea xsin b x
are two solutions to L y = 0 .  (The conjugate root a b i would give rise to y1, y2 , which have the 
same span.



Case 3)  Let L  have characteristic polynomial
p r = rn an 1r

n 1 ...  a1r a0  

with real constant coefficients an 1,..., a1, a0 .  If r a b i k is a factor of p r   then so is the 

conjugate factor r a b i k .  Associated to these two factors are 2 k real and independent solutions 
to L y = 0, namely

ea xcos b x , ea xsin b x  
x ea xcos b x , x ea xsin b x  

:                 :   
xk 1e

a x
cos b x , xk 1e

a x
sin b x

Combining cases 1,2,3, yields a complete algorithm for finding the general solution to L y = 0, as long as
you are able to figure out the factorization of the characteristic polynomial p r  .

Exercise 4)  Find a basis for the solution space of functions y x  that solve
y 9 y = 0 .

(You were told a basis in the last problem of last week's lab....now you know where it came from.)

Exercise 5)  Find a basis for the solution space of functions y x  that solve
y 6 y 13 y = 0 .

Exercise 6)  Suppose a 7th order linear homogeneous DE has characteristic polynomial 

p r = r2 6 r 13
2
r 2 3 .

What is the general solution to the corresponding homogeneous DE? 


