
Wed March 7:  
5.3  Solving constant coefficient homogeneous linear differential equations

Announcements: 

Warm-up Exercise:

 



Theorem 4:  All solutions to the nonhomogeneous second order linear DE
y p x y q x y = f x  

are of the form y = yP yH where yP is any single particular solution and yH is some solution to the 
homogeneous DE.  (yH is called yc, for complementary solution, in the text).  Thus, if you can find a single 
particular solution to the nonhomogeneous DE, and all solutions to the homogeneous DE, you've actually 
found all solutions to the nonhomogeneous DE.  (You had a homework problem related to this idea, 
3.4.40, in homework 5, but in the context of matrix equations, a week or two ago.  The same idea 
reappears in your current lab, in the last problem.)

proof:  Make use of the fact that 
L y y p x y q x y

is a linear operator.  In other words, use the linearity properties

     (1) L y1 y2 = L y1 L y2  

     (2) L c y = c L y , c  .



In Monday's notes we found that the general solution to the homogeneous differential equation 

y 2 y 3 y = 0 

is
yH = c1 e x   c2 e 3 x .

Now consider the non-homogeneous differential equation
y 2 y 3 y = 6.

Notice that 

yP = 2 
is one particular solution to the differential equation.

Exercise 1a)  Solve the initial value problem 
y 2 y 3 y = 6. 

y 0 = 1 
y 0 = 5 

with a solution to the differential equation of the form

y = yP yH = 2  c1 e x   c2 e 3 x.

1b)  Notice that the same algebra shows you could solve every initial value problem 
 

y 2 y 3 y = 6. 
y 0 = b0 
y 0 = b1

with a solution of the form

y = yP yH = 2  c1 e x   c2 e 3 x

so by the uniqueness theorem for initial value problems, these ARE all the solutions to the differential 
equation even though we did not get them a direct method like we used for first order linear differential 
equations.



For the next two sections we focus homogneous linear differential equations with constant coefficients.  
Section 5.3 contains the algorithms we'll need and in section 5.4 we'll apply the general theory to the 
unforced mass-spring differential equation.

5.3:  Algorithms for the basis and general (homogeneous) solution to

L y y n an 1y n 1 ... a1 y a0 y = 0
when the coefficients an 1, an 2,  ... a1, a0 are all constant.

step 1)  Try to find a basis for the solution space made of exponential functions....try y x = er x .  In this 
case

L y = er x rn an 1rn 1 ...  a1r a0 = er x p r  .

We call this polynomial p r  the characteristic polynomial for the differential equation, and can read off 
what it is directly from the expression for L y  if we want.  For each root rj of p r , we get a solution 

e
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 to the homogeneous DE.

Case 1)  If p r  has n distinct (i.e. different) real roots r1, r2, ..., rn , then
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x
 

is a basis for the solution space;  i.e. the general solution is given by

yH x = c1e
r

1
x

c2e
r

2
x

 ...  cne
r

n
x
 .

Example:    The differential equation
y 3 y y 3 y = 0

has characteristic polynomial
p r = r3 3 r2 r 3 = r 3 r2 1 = r 3 r 1 r 1

so the general solution to 
y 3 y y 3 y = 0

is
yH x = c1ex c2e x  c3e 3 x .



Exercise 1)  By construction,  e
r

1
x
, e

r
2
x
, ... , e

r
n
x
 all solve the differential equation.  Show that they're 

linearly independent.  This will be enough to verify that they're a basis for the solution space, since we 
know the solution space is n-dimensional.  Hint:  The easiest way to show this is to list your  roots so that 
r1 r2 ... rn and to use a limiting argument.



Case 2)  Repeated real roots.  In this case p r  has all real roots r1, r2, ... rm (m n  with the rj all 
different, but some of the factors r rj  in p r  appear with powers bigger than 1 .  In other words, 
p r  factors as

p r = r r1

k
1 r r2

k
2 ... r rm

k
m  

with some of the kj 1 , and k1 k2 ... km = n .

Start with a small example:  The case of a second order DE for which the characteristic polynomial has a 
double root.  

Exercise 2)  Let r1 be any real number.  Consider the homogeneous DE

L y y 2 r1 y r1
2 y = 0 .

with p r = r2 2 r1 r r
1
2 = r r1

2 , i.e. r1 is a double root for p r . Show that e
r

1
 x
, x e

r
1
 x
  are a 

basis for the solution space to L y = 0 , so the general homogeneous solution is 

yH x = c1e
r

1
 x

 c2 x e
r

1
 x
 .  Start by checking that x e

r
1

 x
 actually (magically?) solves the DE.

(We may wish to study a special case y 6 y 9 y = 0 .)



Here's the general algorithm:  If

 p r = r r1

k
1 r r2

k
2 ... r rm

k
m  

then (as before) e
r

1
x
, e

r
2
x
, ... , e

r
m

x
 are independent solutions, but since m n there aren't enough of them 

to be a basis.  Here's how you get the rest:  For each kj 1 , you actually get independent solutions
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This yields kj solutions for each root rj , so since  k1 k2 ... km = n you get a total of n solutions to 
the differential equation.  There's a good explanation in the text as to why these additional functions 
actually do solve the differential equation, see pages 316-318 and the discussion of "polynomial 
differential operators".  I've also made a homework problem in which you can explore these ideas.  Using 
the limiting method we discussed earlier, it's not too hard to show that all n of these solutions are indeed 
linearly independent, so they are in fact a basis for the solution space to L y = 0 .

Exercise 3)  Explicitly antidifferentiate to show that the solution space to the differential equation for y x  
y 4 y 3 = 0 

agrees with what you would get using the repeated roots algorithm in Case 2 above.  Hint: first find 
v = y , using v v = 0, then antidifferentiate three times to find yH.  When you compare to the repeated 

roots algorithm, note that it includes the possibility r = 0 and that e0 x = 1.

Case 3)  Complex number roots - this will be our surprising and fun topic on Friday.  Our analysis will 
explain exactly how and why trig functions and mixed exponential-trig-polynomial functions show up as 
solutions for some of the homogeneous DE's you worked with in your homework and lab for this past 
week.  This analysis depends on Euler's formula, one of the most beautiful and useful formulas in 
mathematics:

ei = cos  i sin
for i2 = 1.


