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5.3 Solving constant coefficient homogeneous linear differential equations
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are of the formy =y, +y, Wheré Vp 18 any single particular solutiop and y, is

homogeneous DE. (y,, is called y , for complementary solution, in the text). Thus, if you can find a single

particular solution to the nonhomogeneous DE, and all solutions to the homogeneous DE, you've actually

found all solutions to the nonhomogeneous DE. (You had a homework problem related to this idea,

3.4.40, in homework 5, but in the context of matrix equations, a week or two ago. The same idea
reappears in your current lab, in the last problem.)

Theorem 4: All solutions to the nonhomogeneous second order linear DE
% L) =y 4y +ay=r)
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proof: Make use of the fact that
Ly)=y"+px)y +q(x)y

is a linear operator. In other words, use the linearity properties
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In Monday's notes we found that the general solution to the homogeneous differential equation

y'-2y'-3y=0
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yy=c e’ tcen.

Now consider the non-homogeneous differential equation

\_(‘))t y''=-2y'-3y=6. 'ﬁ?:/‘\

Notice that P, 0
? <L
Y= -2 Ligp= 0-0-3A =4
is one particular solution to the differential equation. A=-
e
Exercise 1a) Solve the initial value problem
y''=-2y'-3y=6.
y(0)=-1
»'(0)==5
with a solution to the differential equation of the form
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1b) Notice that the same algebra shows you could solve every initial value problem (") | l .
y''-2y'-3y=6. -RERAR | 0 |*
#(0) = R
y'(0) ¢ =2
with a solution of the form G =-|

yEypty,= 24 e 4’

so by the uniqueness theorem for initial value problems, these ARE all the solutions to the differential
equation even though we did not get them a direct method like we used for first order linear differential
equations.



For the next two sections we focus homogneous linear differential equations with constant coefficients.
Section 5.3 contains the algorithms we'll need and in section 5.4 we'll apply the general theory to the
unforced mass-spring differential equation.

5.3: Algorithms for the basis and general (homogeneous) solution to

Ly)=y"4a W V++ay+a,y=0 .

when the coefficients @, _ ,a_ _ ,, ... a, a, are all constant.
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tep 1) Try to find a basis for the soluti de of tial functions.... =¢ " . Inthi
ste ry to find a basis for the solution space made of exponential functions....try y(x) = e n this
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L(y)= e”(rn +a "+ tar+t ao) = p(r). 3‘3’ = e

A
We call this polynomial p () the characteristic polynomial for the differential equation, and can read off
what it is directly from the expression for L (y) if we want. For each root 7 of p(r), we get a solution

rx
e’ to the homogeneous DE.

Case 1) If p(r) has n distinct (i.e. different) real roots TS SYRINY then
rlx sz rx
e ,e”,..,e"
is a basis for the solution space; i.e. the general solution is given by

rlx r2x rXx
yy(x)=ce +ce” +..+tce"
Example: The differential equation
y///+3y//_yr_3y:0
has characteristic polynomial
p(r)=r +37 —r=3=0+3)(F=1)=(F+3)(r+1)(r—1)
so the general solution to \
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Exercise 1) By construction, ¢ el .., ¢ all solve the differential equation. Show that they're
linearly independent. This will be enough to verify that they're a basis for the solution space, since we
know the solution space is n-dimensional. Hint: The easiest way to show this is to list your roots so that
r, <r, <..<r andto usea limiting argument.
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Case2) Repeated real roots. In this case p(r) has all real roots |, r,, ... v (m < n) with the r; all

different, but some of the factors (r — rj) in p(r) appear with powers bigger than 1 . In other words,

p(r) factors as
k k k

p(r)= (r—rl) l(r—rz) 2...(r—rm) "
Withsomeofthekj > l,andk1 —I—k2 +..+ km=n.

Start with a small example: The case of a second order DE for which the characteristic polynomial has a
double root.

Exercise 2) Letr, be any real number. Consider the homogeneous DE
rr !/ 2 j—
Ly)=y"-2ry +riy=0.

r.Xx r.Xx
with p(r) = ) ror+ r? = (r—r1 )2 , 1.e. 7, is a double root for p(r). Show that e ",xe' area
basis for the solution space to L (y) = 0, so the general homogeneous solution is

roXx rox

r.Xx
yy(x)=ce' +c xe' . Startby checking thatx e ' actually (magically?) solves the DE.
(We may wish to study a special case y’'+ 6y’ +9y=0.)
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Here's the general algorithm: If

kl k2 km
p(r)=(r—r1) (r—rz) ...(r—rm)
rXo X roXx . . .
then (as before)e " , e~ , ..., e ™ areindependent solutions, but since m < n there aren't enough of them
to be a basis. Here's how you get the rest: For each kj > 1, you actually get independent solutions
r.x rX 5 rX k—1rx
e’ ,xe’ ,xe’ ,..,x’ e’

This yields kj solutions for each root 7; 580 since k| + k, +...+ k = nyou geta total of n solutions to

the differential equation. There's a good explanation in the text as to why these additional functions
actually do solve the differential equation, see pages 316-318 and the discussion of "polynomial
differential operators". I've also made a homework problem in which you can explore these ideas. Using
the limiting method we discussed earlier, it's not too hard to show that all #n of these solutions are indeed
linearly independent, so they are in fact a basis for the solution space to L(y) =0 .

Exercise 3) Explicitly antidifferentiate to show that the solution space to the differential equation for y(x)
4 3
y( ) _ y( ) =0
agrees with what you would get using the repeated roots algorithm in Case 2 above. Hint: first find

rr

V= , using v' -v = 0, then antidifferentiate three times to find When you compare to the repeated
y g Vir y p P

roots algorithm, note that it includes the possibility » = 0 and that fr=1,

Case 3) Complex number roots - this will be our surprising and fun topic on Friday. Our analysis will
explain exactly how and why trig functions and mixed exponential-trig-polynomial functions show up as
solutions for some of the homogeneous DE's you worked with in your homework and lab for this past
week. This analysis depends on Euler's formula, one of the most beautiful and useful formulas in
mathematics:

¢ ®=cos(6) + isin(0)
2 _
fori” =-1.



