
Math 2250-004      
Week 11:  March 26-28  
5.6   applications of linear differential equations, and solution techniques for non-homogeneous problems. 
  (This material is on our exam, this Friday)
10.1-10.2  introduction to Laplace transforms (This material will not be on the midterm exam.)      

Mon March 26:  
5.6  Forced oscillations:  undamped case.

Announcements: 

Warm-up Exercise:

 



Section 5.6:  forced oscillations in mechanical (and electrical) systems.  We will continue to discuss section
5.6 on the Monday after spring break.  Today we'll discuss what happens when there is no damping - 
c = 0.  We'll deal with the damped case after spring break.

But here is an Overview for all cases:
m x c x k x = F0 cos  t  

using section 5.5 undetermined coefficients algorithms.  

     undamped c = 0  :
     In this case the complementary homogeneous differential equation for x t  is

m x k x = 0

x
k
m
x = 0 

x 0
2
 x = 0 

     which has simple harmonic motion solutions xH t = C cos 0t  .  So for the non-
homongeneous DE the method of undetermined coefficients implies we can find particular and general 
solutions as follows:

          0
k
m

  xP = A cos  t    because only even derivatives, we don't need 

sin  t terms !!
             x = xP xH = A cos  t C0 cos 0t 0  .

          0 but 0, C C0  Beating!

          = 0                      xP = t A cos 0 t B sin 0 t    (Case II of undetermined 
coefficients.)

             x = xP xH = C t cos 0 t C0 cos 0t 0  .
("pure" resonance!)

...................................................................................
m x c x k x = F0 cos  t

     damped  c 0 :     in all cases  xP = A cos  t B sin  t = C cos  t  (because the 

roots of the characteristic polynomial are never i  when c 0 ).
          underdamped:         x = xP xH = C cos  t e p tC1cos 1t 1  .

          critically-damped:  x = xP xH = C cos  t e p t c1t c2  .

          over-damped:        x = xP xH = C cos  t c1e
r

1
 t

c2e
r

2
t
 .
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          in all three damped cases on the previous page, xH t 0 exponentially and is called the transient 
solution xtr t  (because it disappears as t .  And in these damped cases   xP t  as above is called the
steady periodic solution xsp t   (because it is what persists as t , and because it's periodic).

          if c is small enough and 0 then the amplitude C of xsp t  can be large relative to 
F0

m
, and 

the system can exhibit practical resonance.  This can be an important phenomenon in electrical circuits, 
where amplifying signals is important.
 

forced undamped oscillations:
Exercise 1a)  Solve the initial value problem for x t :

x 9 x = 80 cos 5 t  
x 0 = 0 
x 0 = 0 .

1b)  This superposition of two sinusoidal functions is periodic because there is a common multiple of their 
(shortest) periods.  What is this (common) period?
1c)  Compare your solution and reasoning with the display at the bottom of this page. 

with plots :
plot1 plot 5 cos 5 t , t = 0 ..10, color = green, style= point :
 plot2 plot 5 cos 3 t , t = 0 ..10, color = blue, style= point :
 plot3 plot 5 cos 5 t 5 cos 3 t , t = 0 ..10, color = black :
 display plot1, plot2, plot3 , title='superposition ' ;
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In general:  Use the method of undetermined coefficients to solve the initial value problem for x t , in the 

case 0 =
k
m :

x t
k
m
x t =

F0

m
cos  t

x 0 = x0
x 0 = v0



Solution:  

x t =
F0

m
2

0
2 cos 0 t cos   t  x0cos 0 t

v0

0

sin 0t  

There is an interesting beating phenomenon for 0 (but still with 0).  This is explained 
analytically via trig identities, and is familiar to musicians in the context of superposed sound waves 
(which satisfy the homogeneous linear "wave equation" partial differential equation):

cos cos = cos cos sin sin            
                                     cos cos sin sin   

          = 2 sin sin   .

Set =
1
2 0 t,  =

1
2 0 t in the identity above, to rewrite the first term in x t  as a 

product rather than a difference:

x t =
F0

m
2

0
2 2 sin

1
2 0 t sin

1
2 0 t x0cos 0t

v0

0

sin 0t  .

In this product of sinusoidal functions, the first one has angular frequency and period close to the original 
angular frequencies and periods of the original sum.  But the second sinusoidal function has small angular 
frequency and long period, given by

angular frequency: 
1
2 0 ,          period:  

4 

0

 .

We will call half that period the beating period, as explained by the next exercise:  

beating period:  
2 

0

 ,       beating amplitude:  
2 F0

m
2

0
2   .
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We will call half that period the beating period, as explained by the next exercise:  

beating period:  
2 

0

 ,       beating amplitude:  
2 F0

m
2

0
2   .

Exercise 2a)  Use one of the formulas on the previous page to write down the IVP solution x t to
x 9 x = 80 cos 3.1 t  

x 0 = 0 
x 0 = 0 .

2b)  Compute the beating period and amplitude.  Compare to the graph shown below.

plot 262.3 sin 3.05 t sin .05 t , t = 0 ..100, color = black, title= `beating` ;
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Resonance:

You can also get this solution by letting 0 in the beating formula.  We will probably do it that way in 
class, on the next page.



in the case 0 =
k
m

 we copy the IVP solution in both forms, from previous page

x t
k
m
x t =

F0

m
cos  t

x 0 = x0
x 0 = v0

x t =
F0

m
2

0
2 cos 0t cos  t  x0cos 0t

v0

0

sin 0t  

x t =
F0

m
2

0
2 2 sin

1
2 0 t sin

1
2 0 t x0cos 0t

v0

0

sin 0t  .

If we let 0 this solution will converge to the resonance IVP solution on the previous page....
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x t =
F0

2 m 0

 t sin 0t     x0 cos 0 t    
v0

0

sin 0t 

Exercise 3a)  Solve the IVP 
x 9 x = 80 cos 3 t  

x 0 = 0 
x 0 = 0 .

First just use the general solution formula above this exercise and substitute in the appropriate values for 
the various terms.  

3b)  Compare the solution graph below with the beating graph in exercise 2.

plot
40
3 t sin 3  t , t = 0 ..40, color = black, title= `resonance` ;
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    After finishing the discussion of undamped forced oscillations, we will discuss the physics and 
mathematics of damped forced oscillations

m x c x k x = F0 cos  t  .

Here are some links which address how these phenomena arise, also in more complicated real-world 
applications in which the dynamical systems are more complex and have more components.  Our baseline 
cases are the starting points for understanding these more complicated systems. We'll also address some of
these more complicated applications when we move on to systems of differential equations, in a few 
weeks.

http://en.wikipedia.org/wiki/Mechanical_resonance   (wikipedia page with links)
http://www.nset.org.np/nset/php/pubaware_shaketable.php  (shake tables for earthquake modeling)

http://www.youtube.com/watch?v=M_x2jOKAhZM  (an engineering class demo shake table)
http://www.youtube.com/watch?v=j-zczJXSxnw   (Tacoma narrows bridge)
http://en.wikipedia.org/wiki/Electrical_resonance  (wikipedia page with links)

http://en.wikipedia.org/wiki/Crystal_oscillator  (crystal oscillators)


