
BUT LOOK OUT
Exercise 2a)  Find a particular solution to 

y 4 y 5 y = 4 ex .
Hint:  since yH = c1e

x c2e
5 x , a guess of yP = a ex will not work (and span ex  does not satisfy the 

"base case" conditions for undetermined coefficients).  Instead try
yP = d x ex 

and factor L = D2 4 D 5 = D 5 D 1  .

2b)  check work with technology



A vector space theorem like the one for the base case, except for L : V W, combined with our 
understanding of how to factor constant coefficient differential operators (as in lab you're working on this 
week for homogeneous DE's) leads to an extension of the method of undetermined coefficients, for right 
hand sides which can be written as sums of functions having the indicated forms below.  See the 
discussion in pages 341-346 of the text, and the table on page 346, reproduced here.
  
Method of undetermined coefficients (extended case):  Finding yP for non-homogeneous linear differential 
equations

L y = f 

If L has a factor D r s and er x is also associated with (a portion of) the right hand side f x  then the 
corresponding guesses you would have made in the "base case" need to be multiplied by xs , as in Exercise
2.  (This is like your current lab problem, and if you understand that, you have an inkling of why this 
recipe works.  On the other hand, if you don't understand that problem, there's another one this week so 
you get a second chance.  :-)  )  You may also need to use superposition, as in our earlier exercises, if 
different portions of f x  are associated with different exponential functions.

Extended case of undetermined coefficients

f x  yP s 0 when p r  
has these roots:

Pm x = b0 b1  ...  bmx
m xs c0 c1x c2x

2  ...  cmx
m  r = 0 

b1 cos  x  b2 sin  x  xs c1cos  x c2sin  x  r = i  

ea x b1 cos  x  b2 sin  x  xsea x c1 cos  x  c2 sin  x  r = a i  

b0ea x xsc0ea x r = a

b0 b1  ...  bmx
m ea x xs c0 c1x c2x

2  ...  cmx
m ea x r = a 



Exercise 3)  Set up the undetermined coefficients particular solutions for the examples below.  When 
necessary use the extended case to modify the undetermined coefficients form for yP .  Use technology to 
check if your "guess" form was right.

L y y n an 1y
n 1 ... a1 y a0 y = f    

3a)  y 2 y = x2 6 x  
(So the characteristic polynomial for L y = 0 is r3 2 r2 = r2 r 2 = r 0 2 r 2 .)

3b)  y 4 y 13 y = 4 e2 xsin 3 x  
(So the characteristic polynomial for L y = 0 is 
r2 4 r 13 = r 2 2 9 = r 2 3 i r 2 3 i .)



corrected DE and solution...



3c)  y 5 y 4 y = 5 cos 2 x 4 ex 5e x.
(So the characteristic polynomial for L y = 0 is p r = r2 5 r 4 = r 4 r 1 .)



Variation of Parameters:  This is an alternate method for finding particular solutions.  Its advantage is that 
is always provides a particular solution, even for non-homogeneous problems in which the right-hand side
doesn't fit into a nice finite dimensional subspace preserved by L, and even if the linear operator L  is not 
constant-coefficient. The formula for the particular solutions can be somewhat messy to work with, 
however, once you start computing.

Here's the formula:  Let y1 x , y2 x ,...yn x  be a basis of solutions to the homogeneous DE

L y y n pn 1 x y
n 1 ... p1 x y p0 x y = 0 .

Then yp x = u1 x y1 x u2 x y2 x  ...  un x yn x  is a particular solution to
L y = f 

provided the coefficient functions (aka "varying parameters") u1 x , u2 x ,...un x  have derivatives 
satisfying the matrix equation

u1

u2

:

un

= W y1, y2,..., yn
1

0

0

:

f

  

where W y1, y2,..., yn  is the Wronskian matrix.

Here's how to check this fact when n = 2:  Write
yp = y = u1y1 u2y2 .

Thus
y = u1y1  u2y2 u1 y1 u2 y2  .

Set
u1 y1 u2 y2 = 0.

Then
y = u1y1  u2y2 u1 y1 u2 y2  .

Set
u1 y1 u2 y2 = f .

Notice that the two ...  equations are equivalent to the matrix equation
y1 y2
y1 y2

u1

u2
=

0

f
 

which is equivalent to the n = 2 version of the claimed condition for yp.  Under these conditions we 
compute

p0 y = u1y1 u2y2  
p1 y = u1y1  u2y2   

          1 y = u1y1  u2y2 f   
                      L y = u1L y1 u2L y2 f  

L y = 0 0 f = f  



Appendix:  The following two theorems justify the method of undetermined coefficients, in both the "base 
case" and the "extended case."  We will not discuss these in class, but I'll be happy to chat about the 
arguments with anyone who's interested, outside of class.  They only use ideas we've talked about already, 
although they are abstract.

Theorem 0:  
     Let V and W be vector spaces. Let V have dimension n  and let v1, v2, ..., vn  be a basis for V.
     Let L : V W be a linear transformation, i.e. L u v = L u L v  and L c u = c L u  holds 
u, v V, c .)  Consider the range of L, i.e. 

Range L L d1v1 d2v2  ... dn vn W, such that each dj  
= d1L v1 d2L v2  ... dnL  vn W, such that each dj

= span L v1 , L v2 , ... L vn .
Then Range L  is n dimensional if and only if the only solution to L v = 0 is v = 0.

proof:
   (i) ⇐: The only solution to L v = 0 is v = 0  implies Range L  is n dimensional:

If we can show L v1 , L v2 , ... L vn  are linearly independent, then they will be a basis for Range L  
and this subspace will have dimension n.  So, consider the dependency equation:

d1L v1 d2L v2  ... dnL  vn =0 .
Because L is a linear transformation, we can rewrite this equation as

L d1v1 d2v2  ... dn vn = 0.
Under our assumption that the only homogeneous solution is the zero vector, we deduce

d1v1 d2v2  ... dn vn = 0.
Since v1, v2, ..., vn are a basis they are linearly independent, so d1 = d2 =...= dn = 0 .

   (ii) ⇒: Range L  is n dimensional implies the only solution to L v = 0 is v = 0 :  Since the range of 
L is n dimensional,  L v1 , L v2 , ... L vn must be linearly independent. Now, let v = d1v1 d2v2

 ... dn vn be a homogeneous solution, L v = 0.  In other words,
L d1v1 d2v2  ... dn vn = 0  
d1L v1 d2L v2  ... dnL  vn =0  

d1 = d2 =...= dn = 0 v = 0 .

Theorem 1  Let Let V and W be vector spaces, both with the same dimension n . Let L : V W be a
linear transformation.  Let the only solution to  L v = 0 be v = 0.  Then for each w W there is a unique 
v V with L v = w .

proof:  By Theorem 0, the dimension of Range L  is n dimensional.  Therefore it must be all of W.  So 
for each w W there is at least one vP V with L vP = w .  But the general solution to L v = w is 
v = vP vH, where vH is the general solution to the homogeneous equation.  By assumption,  vH = 0, so the
particular solution is unique.



Remark:  In the base case of undetermined coefficients, W = V.  In the extended case, W is the space in 
which f lies, and V = xsW, i.e. the space of all functions which are obtained from ones in W by multiplying 
them by xs.  This is because if L factors as

L = D r
1
I
k
1 D r

2
I
k
2 ... D r

m
I
k
m

and if f is in a subspace W associated with the characteristic polynomial root rm, then for s = km the factor 

D r
m
I
k
m of L will transform the space V = xsW back into W, and not transform any non-zero function in

V into the zero function.  And the other factors of L will then preserve W, also without transforming any 
non-zero elements to the zero function.
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Announcements: 

Warm-up Exercise:

 



Section 5.6:  forced oscillations in mechanical (and electrical) systems.  We will continue to discuss section
5.6 on the Monday after spring break.  Today we'll discuss what happens when there is no damping - 
c = 0.  We'll deal with the damped case after spring break.

But here is an Overview for all cases:
m x c x k x = F0 cos  t  

using section 5.5 undetermined coefficients algorithms.  

     undamped c = 0  :
     In this case the complementary homogeneous differential equation for x t  is

m x k x = 0

x
k
m
x = 0 

x 0
2
 x = 0 

     which has simple harmonic motion solutions xH t = C cos 0t  .  So for the non-
homongeneous DE the method of undetermined coefficients implies we can find particular and general 
solutions as follows:

          0
k
m

  xP = A cos  t    because only even derivatives, we don't need 

sin  t terms !!
             x = xP xH = A cos  t C0 cos 0t 0  .

          0 but 0, C C0  Beating!

          = 0                      xP = t A cos 0 t B sin 0 t    (Case II of undetermined 
coefficients.)

             x = xP xH = C t cos 0 t C0 cos 0t 0  .
("pure" resonance!)

...................................................................................
m x c x k x = F0 cos  t

     damped  c 0 :     in all cases  xP = A cos  t B sin  t = C cos  t  (because the 

roots of the characteristic polynomial are never i  when c 0 ).
          underdamped:         x = xP xH = C cos  t e p tC1cos 1t 1  .

          critically-damped:  x = xP xH = C cos  t e p t c1t c2  .

          over-damped:        x = xP xH = C cos  t c1e
r

1
 t

c2e
r

2
t
 .



> > 
> > 

          in all three damped cases on the previous page, xH t 0 exponentially and is called the transient 
solution xtr t  (because it disappears as t .  And in these damped cases   xP t  as above is called the
steady periodic solution xsp t   (because it is what persists as t , and because it's periodic).

          if c is small enough and 0 then the amplitude C of xsp t  can be large relative to 
F0

m
, and 

the system can exhibit practical resonance.  This can be an important phenomenon in electrical circuits, 
where amplifying signals is important.
 

forced undamped oscillations:
Exercise 1a)  Solve the initial value problem for x t :

x 9 x = 80 cos 5 t  
x 0 = 0 
x 0 = 0 .

1b)  This superposition of two sinusoidal functions is periodic because there is a common multiple of their 
(shortest) periods.  What is this (common) period?
1c)  Compare your solution and reasoning with the display at the bottom of this page. 

with plots :
plot1 plot 5 cos 5 t , t = 0 ..10, color = green, style= point :
 plot2 plot 5 cos 3 t , t = 0 ..10, color = blue, style= point :
 plot3 plot 5 cos 5 t 5 cos 3 t , t = 0 ..10, color = black :
 display plot1, plot2, plot3 , title='superposition ' ;

t
2 4 6 8 10

6

0

8
superposition



In general:  Use the method of undetermined coefficients to solve the initial value problem for x t , in the 

case 0 = k
m :

x t
k
m
x t =

F0

m
cos  t

x 0 = x0
x 0 = v0

Solution:  

x t =
F0

m
2

0
2 cos 0 t cos   t  x0cos 0 t

v0

0
sin 0t  

There is an interesting beating phenomenon for 0 (but still with 0).  This is explained 
analytically via trig identities, and is familiar to musicians in the context of superposed sound waves 
(which satisfy the homogeneous linear "wave equation" partial differential equation):

cos cos = cos cos sin sin            
                                     cos cos sin sin   

          = 2 sin sin   .

Set =
1
2 0 t,  =

1
2 0 t in the identity above, to rewrite the first term in x t  as a 

product rather than a difference:

x t =
F

0

m 2
0
2 2 sin

1
2 0 t sin

1
2 0 t x

0
cos 0t

v
0

0
sin 0t  .

In this product of sinusoidal functions, the first one has angular frequency and period close to the original 
angular frequencies and periods of the original sum.  But the second sinusoidal function has small angular 
frequency and long period, given by

angular frequency: 
1
2 0 ,          period:  

4 

0

 .



> > 

We will call half that period the beating period, as explained by the next exercise:  

beating period:  
2 

0

 ,       beating amplitude:  
2 F0

m
2

0
2   .

Exercise 2a)  Use one of the formulas on the previous page to write down the IVP solution x t to
x 9 x = 80 cos 3.1 t  

x 0 = 0 
x 0 = 0 .

2b)  Compute the beating period and amplitude.  Compare to the graph shown below.

plot 262.3 sin 3.05 t sin .05 t , t = 0 ..100, color = black, title= `beating` ;

t
20 40 60 80 100

200

0

200
beating



Resonance:

You can also get this solution by letting 0 in the beating formula.  We will probably do it that way in 
class, on the next page.



in the case 0 =
k
m

 we copy the IVP solution in both forms, from previous page

x t
k
m
x t =

F0

m
cos  t

x 0 = x0
x 0 = v0

x t =
F0

m
2

0
2 cos 0t cos  t  x0cos 0t

v0

0

sin 0t  

x t =
F0

m
2

0
2 2 sin

1
2 0 t sin

1
2 0 t x0cos 0t

v0

0

sin 0t  .

If we let 0 this solution will converge to the resonance IVP solution on the previous page....



> > 

> > 

Exercise 3a)  Solve the IVP 
x 9 x = 80 cos 3 t  

x 0 = 0 
x 0 = 0 .

First just use the general solution formula above this exercise and substitute in the appropriate values for 
the various terms.  Then, if time, use variation of parameters (see the last pages of today's notes), to check 
a particular solution and to illustrate this alternate method for finding particular solutions.

3b)  Compare the solution graph below with the beating graph in exercise 2.

plot
40
3 t sin 3  t , t = 0 ..40, color = black, title= `resonance` ;

t
10 20 30 40

400

0

400
resonance



    After finishing the discussion of undamped forced oscillations, we will discuss the physics and 
mathematics of damped forced oscillations

m x c x k x = F0 cos  t  .

Here are some links which address how these phenomena arise, also in more complicated real-world 
applications in which the dynamical systems are more complex and have more components.  Our baseline 
cases are the starting points for understanding these more complicated systems. We'll also address some of
these more complicated applications when we move on to systems of differential equations, in a few 
weeks.

http://en.wikipedia.org/wiki/Mechanical_resonance   (wikipedia page with links)
http://www.nset.org.np/nset/php/pubaware_shaketable.php  (shake tables for earthquake modeling)

http://www.youtube.com/watch?v=M_x2jOKAhZM  (an engineering class demo shake table)
http://www.youtube.com/watch?v=j-zczJXSxnw   (Tacoma narrows bridge)
http://en.wikipedia.org/wiki/Electrical_resonance  (wikipedia page with links)

http://en.wikipedia.org/wiki/Crystal_oscillator  (crystal oscillators)


