Tues March 13:
5.4-5.5 Finish Monday's notes on 5.4, Then begin 5.5: Finding y,, for non-homogeneous linear

differential equations

Ly)=f

(so that you can use the general solution y =y, + y,, to solve initial value problems). We're back to

y=y(x) in this section...
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The motion exhibited by the solutions

x(t)=A4 cos((x)o t) + B sin(o)0 t)
to the undamped oscillator DE
x"'+ 0002 x=0

is called simple harmonic motion. The reason for this name is that x(¢) can be rewritten in "amplitude-
phase form" as

x(t) =Ccos(0)0 t— Oc) =Ccos(0)0(t— 8))

in terms of an amplitude C > 0 and a phase angle o (or in terms of a time delay d).

To see why this is so, equate the two forms and see how the coefficients 4, B, C and phase angle o. must
be related:

x(t)=A4 cos((o0 t) —I—Bsin((o0 t) = Ccos(a)0 t— (x) .

Exercise 2) Use the addition angle formula cos(a — b) = cos(a)cos(b) + sin(a)sin(b) to show that the
two expressions above are equal provided

A= C cos o
B=Csino .

So if C, o are given, the formulas above determine 4, B. Conversely, if 4, B are given then
=/ A+ B

reie cos(a), Y

determine C, o.. These correspondences are best remembered using a diagram in the 4 — B plane:
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It is important to understand the behavior of the functions

A cos((oo t) + B sin((z)o t) = Ccos(coot — oc> = Ccos((oo(t— d) )
and the standard terminology:

The amplitude C is the maximum absolute value of x(¢). The phase angle o. is the radians of 7 on the

unit circle, so that cos ( ©,f — 0() evaluates to 1. The time delay & is how much the graph of C cos ( (Dot)
is shifted to the right along the 7-axis in order to obtain the graph of x(#). Note that

®, = angular velocity units: radians/time

,
f= frequency = 2—0 units: cycles/time
T

i 2w . .
T =period = — units: time/cycle.
Q)
0

the geometry of simple harmonic motion

simple harmonic motion

— — time delay line - and its height is the amplitude
period measured from peak to peak or between
intercepts
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Exercise 3) A mass of 2 kg oscillates without damping on a spring with Hooke's constant k= 18 — . It
Exercise 3) g withou ping pring w

cC=0
is initially stretched 1 m from equilibrium, and released with a velocity of —- .
= S

3a) Show that the mass' motion is described by x(#) solving the initial\value problem
x""+9x=0

<=1 x(()):13 x’(o):%,

3b) Solve the IVP in a, and convert x(¢) into amplitude-phase and amplitude-time delay form. Sketch the
solution, indicating amplitude, period, and time delay. Check your work with the Wolfram alpha output on
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[ X"(£)+9*x(t)=0, x(0)=1, X'(0)=3/2 a ]

=] EH uw i Web Apps == Examples =& Random

Input:
” . 3
{x (t)+9x(t) = 0, x(0) = 1, x'(0) = 5 }
Open code &3

Autonomous equation:

x"(t) = -9 x(t)
Autonomous equation »

ODE classification:

second-order linear ordinary differential equation
Alternate forms:
” , 3
{x"®) = -9 xt), x(0) = 1, X'(0) = 5 }

{x"(t) + 9 x(t) = 0, x(0) = 1, 2x(0) = 3}

o
Differential equation solution: [¥ Step-by-step solution
x(t) = % sin@ 6 +cos3t) = /. ANS W
o
& WolframAlpha s
p knowledge engine
plot cos(3*t)+.5*sin(3*t),}=0..Pi (=] ]

=" O JN==T"1 = Examples >3 Random

Input interpretation:
plot cos(3t)+0.5sin(3 t) t=0tom

Open code &
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Case 2: Unforced mass-spring system with damping: (This discussion is in Monday's notes but we'll
likely need the start of Tuesday to finish it.)

roots of the characteristic polynomial:

3 possibilities that arise when the damping coefficient ¢ > 0. There are three cases, depending on the
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et

solution decays exponentially to zero, but oscillates infinitely often, with exponentially decaying
pseudo-amplitude e ¥ 'C and pseudo-angular frequency ®,, and pseudo-phase angle o
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Case 2b) ( p2 > @, , or E>amk ). overdamped. In this case we have two negative real roots

2 2
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and
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x(t)=ce +c,e” =e (cle -l-cz) .
« solution converges to zero exponentially fast; solution passes through equilibrium location x = 0 at

most once.

Case 2¢) (p2 = 0)2 , or F=dm k) critically damped. Double real rootr, =r, =-p =- 2L .
m

_ 7t
x(t)y=e (Cl +c, t) .
« solution converges to zero exponentially fast, passing through x = 0 at most once, just like in the
overdamped case. The critically damped case is the transition between overdamped and underdamped:



Exercise 4) Classify (underdamped, overdamped, critically damped), by finding the roots of the
characteristic polynomial. Write down the general solution. Could you solve the IVP for x(¢) ?
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The same initial displacement and velocity, and mass and spring constant - for an undamped,
underdamped, overdamped, and critically damped mass-spring problem: (Courtesy Wolfram alpha).

Input interpretation:

cos(3t)+0.5sin(3t)
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