
Wed Jan 31
 2.5-2.6 Improved Euler and Runge Kutta.

Announcements:

Warm-up Exercise:

2.5-2.6 Improved Euler and Runge Kutta

 In more complicated differential equations it is a very serious issue to find relatively efficient ways of
approximating solutions. An entire field of mathematics, ``numerical analysis'' deals with such issues for a
variety of mathematical problems. Our text explores improvements to Euler in sections 2.5 and 2.6, in
particular it discusses improved Euler, and Runge Kutta. Runge Kutta-type codes are actually used in
commerical numerical packages, e.g. in Wofram, Matlab, Maple etc.
 Let's summarize some highlights from 2.5-2.6.

 Suppose we already knew the solution y x to the initial value problem
y x = f x, y

y x0 = y0.

If we integrate the DE from x to x h and apply the Fundamental Theorem of Calculus, we get

y x h y x =
x

x h
f t, y t dt , i.e.

y x h = y x
x

x h
f t, y t dt .

One problem with Euler is that we approximate this integral above by h f x, y x , i.e. we use the value at
the left-hand endpoint as our approximation of the integrand, on the entire interval from x to x h. This
causes errors that are larger than they need to be, and these errors accumulate as we move from subinterval
to subinterval and as our approximate solution diverges from the actual solution. The improvements to
Euler depend on better approximations to the integral. These are subtle, because we don't yet have an
approximation for y t when t is greater than x, so also not for the integrand f t, y t on the interval
x, x h .

Improved Euler uses an approximation to the Trapezoid Rule to compute the integral in the formula

y x h = y x
x

x h
f t, y t dt .

Recall, the trapezoid rule to approximate the integral

x

x h
f t, y t dt

would be

1
2

h f x, y x f x h, y x h .

Since we don't know y x h we approximate its value with unimproved Euler, and substitute into the
formula above. This leads to the improved Euler "pseudocode" for how to increment approximate
solutions.

Improved Euler pseudocode:

k
1

= f x
j
, y

j
 #current slope

k
2

= f x
j

h, y
j

h k
1

 #use unimproved Euler guess for y x
j

h to estimate slope function when x = x
j

h

k =
1
2 k

1
k
2

 #average of two slopes
x
j 1

= x
j

h #increment x
y
j 1

= y
j

h k #increment y

Exercise 1 Contrast Euler and Improved Euler for our IVP
y x = y
y 0 = 1

to estimate y 1 e with one step of size h = 1. Your computations should mirror the picture below.
Note that with improved Euler we actually get a better estimate for e with ONE step of size 1 than we did
with 5 steps of size h = 0.2 using unimproved Euler on Tuesday. (It's still not a very good estimate.)

 In the same vein as ``improved Euler'' we can use the Simpson approximation for the integral for y
instead of the Trapezoid rule, and this leads to the Runge-Kutta method. You may or may not have talked
about Simpson's Parabolic Rule for approximating definite integrals in Calculus. It is based on a parabolic
approximation to the integrand , whereas the Trapezoid rule is based on an approximationg of the graph
with trapezoids, on small subintervals.

Simpson's Rule:

Consider two numbers x0 x1 , with interval width h = x1 x0 and interval midpoint x =
1
2

x0 x1 .

If you fit a parabola p x to the three points
x
0
, g x

0
, x, g x , x

1
, g x

1
then

x
0

x
1
p t dt =

h
6 g x

0
4 g x g x

1
.

(You will check this fact in your homework this week!) This formula is the basis for Simpson's rule,
which you can also review in your Calculus text or at Wikipedia. (Wikipedia also has a good entry on
Runge-Kutta.) Applying the Simpson's rule approximation for our DE, and if we already knew the
solution function y x , we would have

y x h = y x
x

x h

f t, y t dt

 y x
h
6 f x, y x 4 f x

h
2 , y x

h
2 f x h, y x h .

However, we have the same issue as in Trapezoid - that we've only approximated up to y x so far. Here's
the magic pseudo-code for how Runge-Kutta takes care of this. (See also section 2.6 to the text.)

Runge-Kutta pseudocode:

k
1

= f x
j
, y

j
 # left endpoint slope

k
2

= f x
j

h
2 , y

j

h
2 k

1
 # first midpoint slope estimate, using k

1
 to increment y

j

k
3

= f x
j

h
2 , y

j

h
2 k

2
 # second midpoint slope estimate using k

2
 to increment y

j
k
4

= f x
j

h, y
j

h k
3

 # right hand slope estimate, using k
3
 to increment y

j

k =
1
6 k

1
2 k

2
2 k

3
k
4

 #weighted average of all four slope estimates, consistent with Simpson's rule
x
j 1

= x
j

h # increment x
y
j 1

= y
j

h k # increment y

Exercise 2 Contrast Euler and Improved Euler to Runge-Kutta for our IVP
y x = y
y 0 = 1

to estimate y 1 e with one step of size h = 1. Your computations should mirror the picture below.
Note that with Runge Kutta you actually get a better estimate for e with ONE step of size h = 1 than you
did with 100 steps of size h = 0.01 using unimproved Euler!

Runge-Kutta pseudocode:

k
1

= f x
j
, y

j
 # left endpoint slope

k
2

= f x
j

h
2 , y

j

h
2 k

1
 # first midpoint slope estimate, using k

1
 to increment y

j

k
3

= f x
j

h
2 , y

j

h
2 k

2
 # second midpoint slope estimate using k

2
 to increment y

j
k
4

= f x
j

h, y
j

h k
3

 # right hand slope estimate, using k
3
 to increment y

j

k =
1
6 k

1
2 k

2
2 k

3
k
4

 #weighted average of all four slope estimates, consistent with Simpson's rule
x
j 1

= x
j

h # increment x
y
j 1

= y
j

h k # increment y

(11)(11)

> >

> >
> >

> >

(10)(10)

> >

> >

> >

> >

Numerical experiments

Estimate e by estimating y 1 for the solution to the IVP
y x = y
y 0 = 1.

Apply Runge-Kutta with n = 10, 20, 40 ... subintervals, successively doubling the number of subintervals
until you obtain the target number below - rounded to 9 decimal digits - twice in succession.

evalf e ;
2.718281828459045

It worked with n = 40:

Initialize
restart : # clear any memory from earlier work
Digits 15 : # we need lots of digits for "famous numbers"

unassign `x`, `y` : # in case you used the letters elsewhere, and came back to this piece of code
f x, y y : # slope field function for our DE i.e. for y (x)=f(x,y)
x 0 0 : y 0 1 : #initial point
 h 0.025 : n 40 : #step size and number of steps - first attempt for "famous number e"

Runge Kutta loop. WARNING: ONLY RUN THIS CODE AFTER INITIALIZING
for i from 0 to n do #this is an iteration loop, with index "i" running from 0 to n
 if frac i

10 = 0
 then print i, x i , y i ; #print iteration step, current x,y, values, and exact solution value
 end if:
 k1 f x i , y i ; #current slope function value
 k2 f x i h

2 , y i h
2 k1 ;

first estimate for slope at right endpoint of midpoint of subinterval
 k3 f x i h

2 , y i h
2 k2 ; #second estimate for midpoint slope

 k4 f x i h, y i h k3 ; #estimate for right-hand slope
 k k1 2 k2 2 k3 k4

6 ; # Runge Kutta estimate for rate of change of y
 x i 1 x i h;
 y i 1 y i h k;
end do: #how to end a for loop in Maple

0, 0, 1
10, 0.250, 1.28402541566434
20, 0.500, 1.64872126807197
30, 0.750, 2.11700001155073
40, 1.000, 2.71828181979283

> >

> >

> >

> >

For other problems you may wish to use or modify the following Euler and improved Euler loops.

Euler loop: WARNING: ONLY RUN THIS CODE AFTER INITIALIZING
for i from 0 to n do #this is an iteration loop, with index "i" running from 0 to n
 print i, x i , y i ;
 #print iteration step, current x,y, values, and exact solution value
 k f x i , y i ; #current slope function value
 x i 1 x i h;
 y i 1 y i h k;
end do: #how to end a for loop in Maple

Improved Euler loop: WARNING: ONLY RUN THIS CODE AFTER INITIALIZING
for i from 0 to n do #this is an iteration loop, with index "i" running from 0 to n
 print i, x i , y i ; #print iteration step, current x,y, values, and exact solution value
 k1 f x i , y i ; #current slope function value
 k2 f x i h, y i h k1 ; #estimate for slope at right endpoint of subinterval

 k
k1 k2

2
; # improved Euler estimate

 x i 1 x i h;
 y i 1 y i h k;
end do: #how to end a do loop in Maple

Before running, please put Eulers.m, Runge Kutta.m, Improved Eulers.m,
SlopeField.m, example.m in the same folder. To see the result, input example
in the command windows

example.m

1 % Clear the command window screen, all the variables and ...
close all windows

2 clc, clear, close all
3

4 % Input your function f(x,y) (as a string), where f(x,y) = ...
dy/dx. In this example, f(x,y) = sin(x*y)

5 f = '1-3.*x+y';
6

7 % Draw the slope field in the region xminxxmax, ...
yminyymax for dy/dx = f(x,y)

8 xmin = -1;
9 xmax = 1;

10 ymin = -1;
11 ymax = 1;
12

13 SlopeField(xmin,xmax,ymin,ymax,f)
14

15 hold on
16

17 % Use different numerical methods to solve the IVP on the ...
interval [x0,b] with n subintervals :

18 % dy/dx = f(x,y)
19 % y(x0) = y0
20 x0 = 0;
21 b = 1;
22 y0 = 0;
23 n = 10;
24

25 % Use Euler Method to Solve
26 [x y]=Eulers(x0,y0,b,n,f);
27 plot(x,y,'--','LineWidth',2,'Color','r');
28

29 % Use Improved Euler Method to solve
30 [x y]=Improved Eulers(x0,y0,b,n,f);
31 plot(x,y,'-','LineWidth',2,'Color',[0.9100 0.4100 ...

0.1700]);
32

33 % Use Runge Kutta method to solve
34 [x y]=Runge Kutta(x0,y0,b,n,f);
35 plot(x,y,':','LineWidth',2,'Color','b');
36

37 xlabel('x');ylabel('y')
38 legend('Slope Field','Euler','Improved Euler','Runge Kutta')
39 title(['dy/dx = ' f])

1

The code gives you

-1 -0.5 0 0.5 1

x

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y

dy/dx = 1-3.*x+y

Slope Field

Euler

Improved Euler

Runge Kutta

The functions used in example.m

SlopeField.m

1 function []= SlopeField(xmin,xmax,ymin,ymax,f)
2 % the function f(x,y) must be entered as a string. For example if
3 % f(x,y)=y*cos(x), then you need to enter 'y*cos(x)' for f
4

5 f = str2func(['@(x,y) ',f]); % converts the string input into a ...
function handle

6

7 stepsize=abs(xmin-xmax)/40;
8 [X,Y] = meshgrid(xmin:stepsize:xmax, ymin:stepsize:ymax);
9 dY=f(X,Y);

10 dX=ones(size(dY));
11 L=sqrt(1+dY.ˆ2);
12 quiver(X,Y,dX./L,dY./L,'Color','k','LineWidth',1,'AutoScaleFactor',0.5);
13 axis tight

2

14 end

3

Eulers.m

1 function [x,y] = Eulers(x 0,y 0,b,n,f)
2 % Eulers method with n intervals to solve the initial value ...

problem dy/dx=f(x,y) with
3 % initial conditions y(x 0)=y 0 on the interval [x 0,b]. The ...

function
4 % f(x,y) must be entered as a string.
5

6 % For example, if you wish to solve dy/dx=y*cos(x) with y(0)=1 ...
on the

7 % interval [0,15] with 50 intervals you would enter
8 % Eulers(0,1,15,50,'y.*cos(x)')
9

10 f = str2func(['@(x,y) ',f]); %converts the string input into a ...
function handle

11

12 h=(b-x 0)/n;
13 x=zeros(n+1,1); y= zeros(n+1,1); %Pre-allocoting vectors for speed
14 x(1)=x 0; y(1)=y 0;
15

16 for i=1:n
17 x(i+1)=x 0+i*h;
18 y(i+1)=y(i)+h*f(x(i),y(i));
19 end
20 end

4

Improved Eulers.m

1 function [x,y] = Improved Eulers(x 0,y 0,b,n,f)
2 % Improved Eulers method with n intervals to solve the initial ...

value problem dy/dx=f(x,y) with
3 % initial conditions y(x 0)=y 0 on the interval [x 0,b]. The ...

function
4 % f(x,y) must be entered as a string.
5

6 % For example, if you wish to solve dy/dx=y*cos(x) with y(0)=1 ...
on the

7 % interval [0,15] with 50 intervals you would enter
8 % Improved Eulers(0,1,15,50,'y.*cos(x)')
9

10 f = str2func(['@(x,y) ',f]); % converts the string input into a ...
function handle

11

12 h=(b-x 0)/n;
13 x=zeros(n+1,1); y= zeros(n+1,1); % Pre-allocoting vectors for speed
14 x(1)=x 0; y(1)=y 0;
15 for i=1:n
16 x(i+1)=x 0+i*h;
17 k1=f(x(i),y(i));
18 u=y(i)+h*k1;
19 k2=f(x(i+1),u);
20 y(i+1)=y(i)+h*(k1+k2)/2;
21 end
22 end

5

Runge Kutta.m

1 function [x,y] = Runge Kutta(x 0,y 0,b,n,f)
2 % Runge Kutta method with n intervals to solve the initial value ...

problem dy/dx=f(x,y) with
3 % initial conditions y(x 0)=y 0 on the interval [x 0,b]. The ...

function
4 % f(x,y) must be entered as a string.
5

6 % For example, if you wish to solve dy/dx=y*cos(x) with y(0)=1 ...
on the

7 % interval [0,15] with 50 intervals you would enter
8 % Runge Kutta(0,1,15,50,'y.*cos(x)')
9

10 f = str2func(['@(x,y) ',f]); % converts the string input into a ...
function handle

11

12 h=(b-x 0)/n;
13 x=zeros(n+1,1); y= zeros(n+1,1); % Pre-allocoting vectors for speed
14 x(1)=x 0; y(1)=y 0;
15 for i=1:n
16 x(i+1)=x 0+i*h;
17 k1=f(x(i),y(i));
18 k2=f(x(i)+h/2,y(i)+h/2*k1);
19 k3=f(x(i)+h/2,y(i)+h/2*k2);
20 k4=f(x(i+1),y(i)+h*k3);
21 y(i+1)=y(i)+h*(k1+2*k2+2*k3+k4)/6;
22 end
23 end

6

