
Tues Jan 30
 2.4 Euler's method for solving first order differential equations

Announcements:

Warm-up Exercise:

2.4 Euler's method.

 In these notes we will study numerical methods for approximating solutions to first order differential
equations. Later in the course we will see how higher order differential equations can be converted into
first order systems of differential equations. It turns out that there is a natural way to generalize what we
do now in the context of a single first order differential equations, to systems of first order differential
equations. So understanding this material will be an important step in understanding numerical solutions
to higher order differential equations and to systems of differential equations later on. I wrote these notes
using the software package Maple. Your lab questions on Thursday will let you do analogous
computations in Matlab. Today we'll focus on Euler's method. Tomorrow we'll study "improved Euler"
(section 2.5) and Runge Kutta (section 2.6).

Euler's Method:
 The most basic method of approximating solutions to differential equations is called Euler's method,
after the 1700's mathematician who first formulated it. Consider the initial value problem

dy
dx

= f x, y

y x0 = y0.
We make repeated use of the familiar (tangent line) approximation

y x x y x y x x

where we substitute in the slope function f x, y , for y x .

As we iterate this procedure we and the text will write "h" fixed step size, x h. As we increment the
inputs x and outputs y we are approximating the graph of the solution to the IVP. We begin at the initial
point x0, y0 . Then the next horizontal value on the discrete graph will be

x1 = x0 h
And the next vertical value y1 (approximating the exact value y x1) is

y1 = y0 f x0, y0 h.

In general, if we've approximated xj, yj we set
xj 1 = xj h

yj 1 = yj f xj, yj h.

We could also approximate in the x direction from the initial point x0, y0 , by defining e.g.
x 1 = x0 h

y 1 = y0 h f x0, y0
and more generally via

x j 1 = x j h
y j 1 = y j h f x j, y j

...etc.

Below is a graphical representation of the Euler method, illustrated for the IVP
y x = 1 3 x y

y 0 = 0
with step size h = 0.2.
Exercise 1 Find the numerical values for several of the labeled points.

 As a running example in the remainder of these notes we will use one of our favorite IVP's from the
time of Calculus, namely the initial value problem for y x ,

y x = y
y 0 = 1.

We know that y = ex is the solution, so we'll be able to compare approximate and exact solution values.

Exercise 2 Work out by hand the approximate solution to the IVP above
on the interval 0, 1 , with n = 5 subdivisions and h = 0.2, using Euler's method. This table might help
organize the arithmetic. In this differential equation the slope function is f x, y = y so is especially easy to
compute.

step i x
i

y
i

 slope
f x

i
, y

i
x y = f x

i
, y

i
x x

i
x

y
i

y

0 0 1 1 0.2 0.2 0.2 1.2

1 0.2 1.2

2

3

4

5

Euler Table

Your work should be consistent with the picture below.

> >

> >

(7)(7)

(6)(6)

> >
> >

(8)(8)

> >

(5)(5)

> >

> >

> >

Here is the automated computation for the previous exercise, and a graph comparing the approximate
solution points to the actual solution graph:

Initialize:
restart : #clear all memory, if you wish
Digits 6 : #use floating point arithmetic with 6 digits. could use more if desired
unassign `x`, `y` ; # in case you used the letters elsewhere
f x, y y; # slope field function for the DE y (x)=y
 # change for different DE's!!!

f x, y y

x 0 0; y 0 1; #initial point
 h 0.2; n 5; #step size and number of steps

x0 0

y0 1

h 0.2
n 5

exactsol x ex; #exact solution for the IVP y'=y, y(0)=1
 #change (or omit) for different IVP's!!!

exactsol x ex

Euler Loop
for i from 0 to n do #this is an iteration loop, with index "i" running from 0 to n
 print i, x i , y i , exactsol x i ;
 #print iteration step, current x,y, values, and exact solution value
 k f x i , y i ; #current slope function value
 x i 1 x i h;
 y i 1 y i h k;
end do: #how to end a do loop in Maple

0, 0, 1, 1
1, 0.2, 1.2, 1.22140
2, 0.4, 1.44, 1.49182
3, 0.6, 1.728, 1.82212
4, 0.8, 2.0736, 2.22554
5, 1.0, 2.48832, 2.71828

> >
Plot results:

with plots :
Eulerapprox pointplot seq x i , y i , i = 0 ..n : #approximate soln points
 exactsolgraph plot exactsol t , t = 0 ..1, `color` = `black` : #exact soln graph
 #used t because x has been defined to be something else
 display Eulerapprox, exactsolgraph , title = `approximate and exact solution graphs` ;

t
0 0.2 0.4 0.6 0.8 1

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

approximate and exact solution
graphs

Exercise 3 Why are our approximations too small in this case, compared to the exact solution?

> >

> >

> >

> >

(9)(9)

> >

> >

> >

> >

 It should be that as your step size h = x gets smaller, your approximations to the actual solution get
better. This is true if your computer can do exact math (which it can't), but in practice you don't want to
make the computer do too many computations because of problems with round-off error and computation
time, so for example, choosing h = .0000001 would not be practical. But, trying h = 0.01 in our previous
initial value problem should be instructive.
 If we change the n-value to 100 and keep the other data the same we can rerun our experiment, copying,
pasting, modifying previous work.

Initialize
restart : #clear all memory, if you wish
unassign `x`, `y` ; # in case you used the letters elsewhere
Digits 6 :
f x, y y : # slope field function for the DE y (x)=y
 # change for different DE's!!!
x 0 0 : y 0 1 : #initial point
 h 0.01 : n 100 : #step size and number of steps
exactsol x ex : #exact solution for the IVP y'=y, y(0)=1
 #change (or omit) for different IVP's!!!

Euler Loop (modified using an "if then" conditional clause to only print every 10 steps)

for i from 0 to n do #this is an iteration loop, with index "i" running from 0 to n

 if frac
i

10
= 0

 then print i, x i , y i , exactsol x i ;
 end if: #only print every tenth time
 k f x i , y i ; #current slope function value
 x i 1 x i h;
 y i 1 y i h k;
end do: #how to end a for loop in Maple

0, 0, 1, 1
10, 0.10, 1.10463, 1.10517
20, 0.20, 1.22020, 1.22140
30, 0.30, 1.34784, 1.34986
40, 0.40, 1.48887, 1.49182
50, 0.50, 1.64463, 1.64872
60, 0.60, 1.81670, 1.82212
70, 0.70, 2.00676, 2.01375
80, 0.80, 2.21672, 2.22554
90, 0.90, 2.44864, 2.45960

100, 1.00, 2.70483, 2.71828

> >
plot results:

with plots :
Eulerapprox pointplot seq x i , y i , i = 0 ..n , color = red :
 exactsolgraph plot exactsol t , t = 0 ..1, `color` = `black` :
 #used t because x was already used has been defined to be something else
 display Eulerapprox, exactsolgraph , title = `approximate and exact solution graphs` ;

t
0 0.2 0.4 0.6 0.8 1

1
1.2
1.4
1.6
1.8

2
2.2
2.4
2.6

approximate and exact solution graphs

