
Theorem: Consider the autonomous differential equation
x t = f x  

with f x  and 
 x

 f x  continuous (so local existence and uniqueness theorems hold).  Let f c = 0 , i.e. 

x t c is an equilibrium solution.  

Suppose c is an isolated zero of f, i.e. there is an open interval containing c so that c is the only zero of f in 
that interval.  The the stability of the equilibrium solution c can is completely determined by the local phase 
diagrams:
   

sign f :  0              c     c is unstable         
      

   sign f :  0         c     c is asymptotically stable

  sign f :    0           c     c is unstable (half stable)

          sign f : 0          c      c is unstable (half stable)      

We can actually prove this Theorem with calculus!!  (want to try?)          



Constructing many solutions from one ....

Exercise 3)  Use the chain rule to check that if x t  solves the autonomous DE

x t = f x  

Then X t x t c   solves the same DE.  What does this say about the geometry of representative 
solution graphs to autonomous DEs?  Have we already noticed this?

Exercise 4)   Use the chain rule to check that if  x t  solves the autonomous DE
x t = f x  

Then X t x t   solves 

X t = f X   



Application of Exercise 4:  Understanding the "doomsday-extinction" model via the logistic model.  With 
different hypotheses about fertility and mortality rates, one can arrive at a population model which looks 
like logistic, except the right hand side is the opposite of what it was in that case:

Logistic:                         P t = a P2 b P  
  Doomsday-extinction:      Q t = a Q2 b Q       

For example, suppose that the chances of procreation are proportional to population density (think 
alligators or insect plagues), i.e. the fertility rate = a Q t , where Q t   is the population at time t.  
Suppose the morbidity rate is constant, = b.  With these assumptions the birth and death rates are a Q2 
and b Q .... which yields the DE above.  In this case factor the right side:

Q t = a Q Q
b
a

= k Q Q M .

Exercise 5)  Construct the phase diagram for the general doomsday-extinction model and discuss the 
stability of the equilbrium solutions.

If P t  solves the logistic differential equation
P t = k P M P  

we deduce from exercise 4 that Q t P t  solves the doomsday-extinction differential equation
Q t = k Q Q M  .

We can use this fact to recover a formula for solutions to doomsday-extinction IVPs.  What does this say 
about how representative solution graphs are related, for the logistic and the doomsday-extinction models? 
The solution to the logistic IVP is

P t =
MP0

M P0 e Mkt P0

 .

So for the doomsday-extinction IVP
Q t = k Q Q M  

Q 0 = Q0
the solution is

Q t = P t =
MQ0

M Q0 eMkt Q0



Example:  We can use the formula on the previous page or work from scratch using partial fractions, to 
write down the solution to the doomsday-extinction IVP

x t = x x 1
x 0 = 2 .

Does the solution exist for all t 0 ?  (Hint: no, there is a very bad doomsday at t = ln 2.   
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2.2:  Further application of phase-portrait analysis:  harvesting a logistic population...text p.97  (or, why do
fisheries sometimes seem to die out "suddenly"?)  Consider the DE

P t = a P b P2 h .
Notice that the first two terms represent a logistic rate of change, but we are now harvesting the population 
at a rate of h units per time.  For simplicity we'll assume we're harvesting fish per year (or thousands of 
fish per year etc.)  One could model different situations, e.g. constant "effort" harvesting, in which the 
effect on how fast the population was changing could be h P instead of P .

For computational ease we will assume a = 2, b = 1 .  (One could actually change units of population and 
time to reduce to this case.)



This model gives a plausible explanation for why many fisheries have "unexpectedly" collapsed in modern
history.  If h 1  but near 1 and something perturbs the system a little bit (a bad winter, or a slight 
increase in fishing pressure), then the population and/or model could suddenly shift so that P t 0 very 
quickly.

Here's one picture that summarizes all the cases - you can think of it as collection of the phase diagrams for
different fishing pressures h .  The upper half of the parabola represents the stable equilibria, and the lower
half represents the unstable equilibria.  Diagrams like this are called "bifurcation diagrams".  In the sketch 
below, the point on the h- axis should be labeled h = 1 , not h .  What's shown is the parabola of 
equilibrium solutions, c = 1 1 h , i.e. 2 c c2 h = 0 , i.e. h = c 2 c  .



2.3 Improved velocity models: velocity-dependent drag forces

For particle motion along a line, with 
position x t  (or y t  , 

velocity x t = v t  , and 
acceleration x t = v t = a t  

We have Newton's 2nd law
m v t = F

where F is the net force.  
    We're very familiar with constant force F = m  , where  is a constant:

v t =  
v t =  t v0 

x t =
1
2

 t2 v0 t x0 .

Examples we've seen a lot of:
    = g near the surface of the earth, if up is the positive direction, or = g if down is the positive 

direction.
    boats or cars or "particles" subject to constant acceleration or deceleration.

New today !!!  Combine a constant force with a velocity-dependent drag force, at the same time.  The text 
calls this a "resistance" force:

m v t = m  FR 

Empirically/mathematically the resistance forces FR depend on velocity, in such a way that their magnitude 
is

FR k v p  , 1 p 2 .



   p = 1 (linear model, drag proportional to velocity):
m v t = m  k v 

    This linear model makes sense for "slow" velocities, as a linearization of the frictional force function, 
assuming that the force function is differentiable with respect to velocity...recall Taylor series for how the 
velocity resistance force might depend on velocity:

FR v = FR 0 FR 0  v  
1
2!

FR 0 v2  ...  

FR 0 = 0 and for small enough v the higher order terms might be negligable compared to the linear term, 
so

FR v  FR 0  v k v  .

We write k v with k 0, since the frictional force opposes the direction of motion, so sign opposite of 
the velocity's.

http://en.wikipedia.org/wiki/Drag_(physics)#Very_low_Reynolds_numbers:_Stokes.27_drag 

Exercise 1:  Rewrite the linear drag model as
v t =  v 

where the =
k
m

 .  Construct the phase diagram for v .  Notice that v t  has exactly one constant 

(equilibrium) solution, and find it.  Its value is called the terminal velocity.  Explain why terminal velocity 
is an appropriate term of art, based on your phase diagram for velocity.

(This is a constant coefficient linear DE, so it's easy to solve.  We'll do that in detail on Monday, and then 
we'll antidifferentiate v t  to find the position function x t .  The text also works this out in detail.)


