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2.2: Autonomous Differential Equations.
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2.2: Recall, that a first order DE for x = x(¢) is written as

x'=f(t,x),
x' (1) =f(tx(1)).

which is shorthand for

Definition: If the slope function fonly depends on the value of x(#), and not on ¢ itself, then we call the
first order differential equation autonomous:

x'=f(x). 3
4 = e Skees ¥
LRS = RHS
0 = §()

Example: The logistic DE, P'= k P(M — P) is an autonomous diferential equation for P(#), because
how fast the population is changing only depends on the value of thapopulation.

Definition: Constant solutions x(#) = c to autonomous differential equations x’'= f'(x) are called
equilibrium solutions. Since the derivative of a constant function x(#) = c is zero, the values ¢ of
equilibrium solutions are exactly the roots c to f(¢) =0 .

Example: The functions P(¢) = 0 and P(¢) = M are the equilibrium solutions for the logistic DE.
P/=kP(M-F)  Petw
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Def: Letx(#) = c be an equilibrium solution for an autonomous DE. Then

- ¢ is a stable equilibrium solution if solutions with initial values close enough to ¢ stay closetoc. 19 o

There is a precise way to say this, but it requires quantifiers: For every € > 0 there exists a d > 0 so that
for solutions with |x(0) — ¢| < §, we have |x(f) — ¢| < eforalls > 0.
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- ¢ 1S an unstable equilibrium if it is not stable.

- ¢ 1s an asymptotically stable equilibrium solution if it's stable and in addition, if x(0) is close enough
to ¢, then tlgnwx(t) =c.

Precisely there exists ad > 0 so thatif |x(0) — ¢| < J then Jim x(2) =c.

Notice that if ¢ is asymptotically stable, then the horizontal line x = ¢ will be an asympfote to nearby
solution graphs x = x()) X4
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Exercise 2: Use phase diagram analysis to guess the stability of the equilibrium solutions in Exercise 1.
For (a) you've worked out a solution formula already, so you'll know you're right. For (b), (¢), use the

Theorem on the next page to justify your answer(s. ) X373
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Theorem: Consider the autonomous differential equation
x' (1) =f(x)

0
with f(x) and ax f(x) continuous (so local existence and uniqueness theorems hold). Letf(c) =0, i.e.

x(t) = cis an equilibrium solution.

Suppose c is an isolated zero of f, i.e. there is an open interval containing c so that c is the only zero of fin
that interval. The the stability of the equilibrium solution ¢ can is completely determined by the local phase
diagrams:
sign(f): ----0+++ = <<« «<c—>—>—> = cisunstable
sign(f): +++0—-—--- = — > —oce <« = cisasymptotically stable

sign(f): +++0+++ = ——>—>oc—>—>— = cisunstable (half stable)

sign(f):----0—--- = <« <« <«c <<« = cisunstable (half stable)

We can actually prove this Theorem with calculus!! (want to try?)



