Math 2250-004

Wed Jan 17

• 1.4: separable DEs, with applications.

<u>Announcements:</u>	 Hand in HW in folder Quiz today (i) for labs: Office homs do part of Friday's notes today \$1.5 	Jose Yanez	alphabetize by ast name M,W (2:00-1:00 WEB 1622 T 2-3, W: 5:00-6:00 JWB 332
Warm-up Exercise:	Find the solution to growth/decay model	, the exponent for a quan	-tial +ity x(t): (kro)
$\frac{dx}{dt} =$		o Hadle o	'til 10:50
$\int \frac{1}{x} dx = \frac$	6	, that s h s	sicin teo
×\= ×=	$e^{-kt+c} = e^{-kt}$ A e^{-kt} (A=e ^c , n-e ^c)		
	$= Ae^{ht} (A \in \mathbb{R}) $ $\times (o) = \times_{o} = A \cdot e^{0} = A$		
	$x(t) = x_0 e^{-kt}$		

For your section 1.4 homework in the upcoming week I've assigned a selection of separable DE's - some applications will be familiar, e.g. exponential growth/decay and Newton's Law of cooling. As an example of these sorts of applications:

Exercise 1) When relatively small amounts of sugar (or any other solute) are dissolving in continuously mixed water, the amount A that remains undissolved after t minutes is well-modeled by a differential equation

$$\frac{dA}{dt} = -kA.$$

(Because how fast the sugar dissolves is proportional to the amount that remains undissolved.) Suppose 25 % of the sugar has dissolved after 1 minute.

<u>1a</u>) How long does it take for half of the sugar to dissolve? (This is the "half life" of the undissolved sugar.)

trom warming,

$$A[t] = A_0 e^{-kt}$$
use to find

$$A(1) = .75 \not A_0 = \not A_0 e^{-k\cdot 1}$$

$$.75 = e^{-k}$$

$$ln(.75) = -k,$$

$$A(t) = A_0 e^{-.288t}$$

$$A(t) = A_0 e^{-.288t}$$

$$A(t) = \frac{1}{2}A_0 \quad solve for t$$

$$half life$$

$$\frac{1}{2}A_0 = A_0 e^{-kt}$$

$$ln(.5) = -kt \implies t = ln(.5) = ln^2$$

$$-k$$

$$= 2.41 \text{ min}$$

1b) How long does it take until 90 % of the sugar has dissolved?

1? Solve A(t) = .1 A. fort

Section 1.5, linear differential equations:

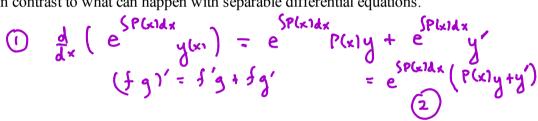
A first order linear DE for y(x) is one that can be written as

y' 8 y appear
in a sum,
$$x' + P(t)x = Q(t)$$
 $x = x(t)$
with porch 1

Exercise 1: Classify the differential equations below as linear, separable, both, or neither. Justify your answers.

a) $y'(x) = -2y + 4x^2$ linear: $y' + 2y = 4x^2$ P(x) Q(x)b) $y'(x) = x - y^2 + 1$ not linear c) $y'(x) = x^2 - x^2y + 1$ linear $y' + x^2y = x^{2} + 1$ d) $y'(x) = \frac{6x - 3xy}{x^2 + 1}$ linear $y' + \frac{3x}{x^2 + 1}y = \frac{6x}{x^2 + 1}$ not separable e) $y'(x) = x^2 + y^2$ hot linear $y' + \frac{3x}{x^2 + 1}y = \frac{6x}{x^2 + 1}$ separable $\frac{dy}{dx} = \frac{x}{x^2 + 1}(6-3y)$! f) $y'(x) = x^2 e^{x^3}$. linear $y' + \frac{0}{2}y = \frac{x^2 e^{x^3}}{2}$ separable $y' = (x^2 e^{x^2})(1)$ g) for $x(t) = x'(t) = k \times x$ $x' - k \times = 0$ linear $x' + 2y = x^2 e^{x^2}$ also separable Algorithm for solving linear DEs is a method to use the differentiation product rule backwards: y' + P(x)y = Q(x)Let $\int P(x)dx$ be any antiderivative of *P*. Multiply both sides of the DE by its exponential to yield an equivalent DE:

$$e^{\int P(x)dx}(y' + P(x)y) = e^{\int P(x)dx}Q(x)$$


because the left side is a derivative (product rule):

$$\frac{1}{dx}\left(e^{\int P(x)dx}y\right) = e^{\int P(x)dx}Q(x) \ .$$

So you can antidifferentiate both sides with respect to *x* :

$$e^{\int P(x)dx} y = \int e^{\int P(x)dx} Q(x)dx + C.$$
$$\int P(x)dx$$

Dividing by the positive function $e^{\int_{-\infty}^{1} (x) dx}$ yields a formula for y(x). Notice, if you look carefully at this formula for the solution, that if P(x), Q(x) are defined and continuous on any interval *I*, then the resulting formula for y(x) can be used to find the solution to any IVP with initial point in that interval, defined on the entire interval. This is in contrast to what can happen with separable differential equations.

Exercise 2: Find all solutions to the differential equation

$$y'(x) = -2y + 4x^2$$
,

and compare your solutions to the Wolfram alpha check.

$$y' + 2y = 4x^{2} 4$$

$$P(x_{1} \quad Q|x)$$

$$e^{P(x)dx} = 2x \\ e^{x} \quad I.F.$$

$$e^{2x} (y' + 2y) = e^{2x} 4$$

$$\frac{d}{dx} (e^{2x} y(x_{1})) = 4e^{2x}$$

$$e^{2x} y = \int 4e^{2x} dx$$

$$e^{2x} y = 2e^{2x} + C$$

$$y = 2 + Ce^{-2x}$$

$$\left(\frac{2e^{2x} + C}{e^{2x}}\right)$$

$$d_{x}(e^{2x}y) = 2e^{2x}y + e^{2x}y'$$

WolframAlpha[®] computational knowledge engine.

y'(x)=-2y(x)+4x^2			☆ 🗖
🔤 🔟 🐙	III Web Apps	Examples	⊐⊄ Random
Input:			
$y'(x) = -2 y(x) + 4 x^2$			
			Open code 🔿
ODE classification:			
first-order linear ordinary differential equation	L		
Alternate forms:			
$4 x^2 = y'(x) + 2 y(x)$			
			æ
$y'(x) = 2(2x^2 - y(x))$			
Differential equation solution:	Approximate fo	rm 🗹 Step-t	y-step solution
$y(x) = c_1 e^{-2x} + 2x^2 - 2x + 1$			
			æ