
3.4 Matrix algebra

Matrix vector algebra that we've already touched on, but that we want to record carefully:

Vector addition and scalar multiplication:
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Vector dot product , which yields a scalar (i.e. number) output (regardless of whether vectors are column 
vectors or row vectors):
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Matrix times vector:  If A is an m n matrix and x is an n column vector, then
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Compact way to write our usual linear system:
A x = b . 



Exercise 1a)  Compute
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Matrix times matrix:  Let Am n, Bn p be two matrices such that the number of columns of A equals the 
number of rows of B.  Then the product AB is an m p matrix, with

colj AB = A colj B .

In other words, you just compute matrix times vector, for each column of B, to get the corresponding 
column of the product AB.  So, the resulting matrix will have as many columns as B and as many rows as 
A.

Exercise 1b)  Compute
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Summary of different ways to think of the matrix product A B:

   The jth column of AB is given by A times the jth column of B 
colj AB = A colj B  

   The ith entry in the jth column of A B, i.e.  entryi j AB  is the dot product of the ith row of A with the  

jth column of B:

entryi j AB rowi A colj B =
k = 1

n

ai kbk j .

This stencil might help:



More matrix operations:  

     addition and scalar multiplication:  Let Am n, Bm n be two matrices of the same dimensions (m rows 
and n columns).  Let entryi j A = ai j, entryi j B = bi j .  (In this case we write A = ai j , B = bi j  .)  
Let c be a scalar. Then

entryi j A B ai j bi j .
entryi j c A c ai j .

In other words, addition and scalar multiplication are defined analogously as for vectors.  In fact, for these 
two operations you can just think of matrices as vectors written in a rectangular rather than row or column 
format.

Exercise 3)  Let A :=
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Properties for the algebra of matrix addition and multiplication :

   Multiplication is not commutative in general (AB usually does not equal BA , even if you're multiplying 
square matrices so that at least the product matrices are the same size).

But other properties you're used to do hold:
      is commutative                                       A B = B A 

      is associative                                         A B C = A B C  

     scalar multiplication distributes over     c A B = cA cB .

     multiplication is associative                         AB C = A BC  .

     matrix multiplication distributes over     A B C = AB AC; 
                                                                              A B C = AC BC 

  If A is an m n matrix, and we use the letter I for identity matrices,  then   Im m Am n = A   and   
Am n In n = A.
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We've been talking about matrix algebra: addition, scalar multiplication, multiplication, and how these 
operations combine.  If necessary, finish those notes.  

But I haven't told you what all that algebra is good for.  Today we'll start to find out.  By way of 
comparison, think of a scalar linear equation with known numbers a, b, c, d and an single unknown 
number x, 

a x b = c x d
We know how to solve it by collecting terms and doing scalar algebra:

a x c x = d b 

a c  x = d b       *

x =
d b
a c

 .

How would you solve such an equation if A, B, C, D were square matrices, and X was a vector (or matrix)
?  Well, you could use the matrix algebra properties we've been discussing to get to the ∗ step.  And then if
X was a vector you could solve the system * with Gaussian elimination.  In fact, if X was a matrix, you 
could solve for each column of X (and do it all at once) with Gaussian elimination.  

But you couldn't proceed as with scalars and do the final step after the * because it is not possible to divide
by a matrix. Today we'll talk about a potential shortcut for that last step that is an analog of of dividing, in 
order to solve for X .  It involves the concept of inverse matrices.



Matrix inverses:  A square matrix An n is invertible if there is a matrix Bn n so that
AB = BA = I ,

where I is the n n identity matrix.  In this case we call B the inverse of A, and write B = A 1 .

Remark:   A matrix A can have at most one inverse, because if we have two candidates B, C with

AB = BA = I    and also    AC = CA = I 
then

BA C = IC = C  
B AC = BI = B 

so since the associative property BA C = B AC  is true, it must be that
B = C.  

Exercise 1a)  Verify that for A =
1 2

3 4
 the inverse matrix is B =

2 1

3
2

1
2

 .

Inverse matrices are very useful in solving algebra problems.  For example

Theorem:  If A 1 exists then the only solution to Ax = b is x = A 1b .

Exercise 1b)  Use the theorem and A 1 in 1a, to write down the solution to the system
x 2 y = 5  

3 x 4 y = 6      


