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4.3 - 4.4.  linear independence, bases and dimension for vector spaces.

Announcements: 

Warm-up Exercise:



Exercise 0)  In Chapter 5 we focus on the vector space
V = C f :  s.t. f is a continuous function  

and its subspaces.  Verify that the vector space axioms for linear combinations are satisfied for this space 
of functions.  Recall that the function f g is defined by f g x f x g x  and the scalar 
multiple c f x  is defined by c f x c f x  .   What is the zero vector for functions?

Definition: A vector space is a collection of objects together with and "addition" operation "+", and a scalar
multiplication operation, so that the rules below all hold.  

 (α)  Whenever f, g V then f g V .  (closure with respect to addition)

 (β)   Whenever f V and c , then c f V.  (closure with respect to scalar 
multiplication)

As well as:
(a)  f g = g f   (commutative property)

(b)  f g h = f g h  (associative property)

(c)  0 V so that f 0 = f is always true.  

(d)  f V f V so that f f = 0  (additive inverses)

(e)  c f g = c f c g   (scalar multiplication distributes over vector addition)

(f)  c1 c2 f = c1 f c2 f  (scalar addition distributes over scalar multiplication)

(g)  c1 c2 f = c1c2 f  (associative property)

(h)  1 f = f, 1 f = f,  0 f = 0   (these last two actually follow from the others).



Because the vector space axioms are exactly the arithmetic rules we used to work with linear combination 
equations, all of the concepts and vector space theorems we talked about for m and its subspaces make 
sense for the function vector space V and its subspaces.  In particular we can talk about

     the span of a finite collection of functions f1, f2, ... fn , span f1, f2, ... fn  .

     linear independence/dependence for a collection of functions f1, f2, ... fn  .

     subspaces of V 

     bases and dimension for finite dimensional subspaces.  (The function space V in Exercise 0 itself is 
infinite dimensional, meaning that no finite collection of functions spans it.)



Exercise 1  Consider the three functions with domain , given by

f1 x = 1,   f2 x = x,  f3 x = x2.
1a)  Describe span f1, f2,  f3 .

1b)  Is the set f1, f2,  f3  linearly dependent or linearly independent? 



We've been talking about vector spaces and subspaces, with examples in 2, 3, n.

Key facts about how subspaces (sub vector spaces) DO arise:

There are two main ways that subspaces arise:  (These ideas will be important when we return to 
differential equations, in Chapter 5, although it's probably difficult to envision what they have to do with 
differential equations right now.)

1)   W = span v1, v2, ... , vn  is always a subspace.
Expressing a subspace this way is an explicit way to describe the subspace W, because you are "listing" all
of the vectors in it.  

Why  W = span v1, v2, ... , vn  is a subspace:  Let v, w W.  In other words, we can express
v = c1v1 c2v2 ... cnvn
w = d1v1 d2v2 ... dnvn .

So,

v w = c1v1 c2v2 ... cnvn  d1v1 d2v2 ... dnvn . 

After using the vector space axioms (addition is commuative and associative, and scalar addition 
distributes over scalar multiplication), we can rewrite

v w = c1 d1 v1 c2 d2 v2 ... cn dn vn W  .

This verifies  (α).

Now let c .  Then 
c v = c c1v1 c2v2 ... cnvn   =  cc1v1 cc2v2 ... ccnvn W   

which verifies .

(And, notice that 0 v = 0 W.)

Example:  From yesterday's discussion, an example subspace in 3:

W = span v1 =

1

0

0
, v2 =

0

1

2
is a 2-dimensional subspace, i.e. plane through the origin.



The other way subspaces arise (in n) :

2)  Let A be an m n matrix.  Let V = x n such that A x = 0 .  Then V is a subspace.  (We call this 
collection of vectors the "homogeneous solution space" or "null space" of A.  

Note that this is an implicit way to describe the subspace V  because we're only specifying a homogeneous 
matrix equation that the vectors in V must satisfy, but you're not saying what the vectors are.  

Why V is a subspace:  Let v, w V  

Av = 0, Aw = 0         A v w =  Av Aw   =  0 0 = 0,            v w V   (verifies α)
and let c  

Av = 0       A c v = c A v = c 0 = 0,      c v V  (verfies β).

(and 0 V, since A 0 = 0.)
..............................................................................

Example:  Continuing the example from the previous page, the plane

W = span v1 =

1

0

0
, v2 =

0

1

2

could have been described implicitly as the collection of position vectors for points x, y, z  satisfying the 
very small homogeneous matrix equation

0 x 2 y z = 0.

0 2 1

x

y

x
= 0 .


