Math 2250-004 Week 8 notes

We will not necessarily finish the material from a given day's notes on that day. We may also add or
subtract some material as the week progresses, but these notes represent an in-depth outline of what we
plan to cover. These notes include material from 4.2-4.4 and an introduction to Chapter 5.

Mon Feb 26
4.3, 4.2 linear combinations and independence of vectors, vector subspaces of R?2, R3, R” .
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We've been discussing ideas related to linear combinations of vectors. After the weekend, we should
review, to recall these concepts:

A linear combination of the vectors in the set { Y, Yy, ¥ } is

any vector y that is a sum of scalar multiples of those vectors,

i.e. any y expressible as
r=cy, +c

The span of the vectors in the set {21 U } is

-n

the collection of all possible linear combinations:

’ span{zl,gg, zn} = {g=clzl tepy,+ oty such that each ¢, € R,i= 1,2,...n}

The vectors in the set {y v } are linearly dependent means

P U

it is possible to satisfy ¢,v, + ¢, v, + ..+ ¢ v =0 with not all of the weights c,, c =0.

1> Cps €,

(Equivalently, at least one Y, can be expressed as a linear combination of some of the other vectors in the

collection.)

The vectors in the set { V.Y, ¥ } are linearly independent means

clzl+0222+...+cn2n20 = ¢ =c, =.=c =0.

(Equivalently, no v, can be expressed as a linear combination of some of the other vectors in the

collection.)



NEW:
Definition: Let V= span { Y, Yy, ¥ } If the vectors in the set { Y,V ¥ } are linearly independent,
then we say that they are a basis for V. And, we say that the dimension of V'is n.
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© Example The setofvectors {| O |,| 1 || O | spans R3 and is linearly independent, so is a basis for

R3. The dimension of R3 is 3!

Let's review what we were doing at the end of class on Friday, in light of these new definitions...
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Exercise 3) Consider the two vectors y = [1,0, O]T, v, = [0,-1, 2]T e R3.
3a) Sketch these two vectors as position vectors in R3, using the axes below\
<= {c¥, R ={c£{l,cc~ﬁ2
3b) What geometric object (Remember, we are identifying position vectors With their

endpoints.) Sketch a portion of this object onto your picture below. Remember though, the "span"
continues beyond whatever portion you can draw. X —axis

3c) What geometric object is span { Y.y, } ? Sketch a portion of this object onto your picture below.

Remember though, the "span" gontinues beyond whatever portion you can draw.
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3d) What implicit equation must vectors [bl, b,, b, ]T satisfy in order to be in span { v,y }? Hint: For
what [bl, b,, b, ]T can you solve the system
1 0 b,
c| 0 ]+e| -1]|= b,
0 2 b3
- -

V.
Vi 2
for ¢ , ¢, ? Write this an augmented matrix problem and use row operations to reduce it, to see when you
get a consistent system for ¢, , ¢
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Sb) Show that the vectors

1 0 3
y=| 0] p=|-1|p=| 4
~1 2 =3

0 2 -8

are linearly dependent (even though no two of them are scalar multiples of each other).
mean geometrically about the span of these three vectors?
Hint: You might find this computation useful:
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Exercise 1) Use properties of reduced row echelon form matrices to answer the following questions
<V v

1a) Why must more than 3 vectors in R3 always be linearly dependent?
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1b) Why can fewer than 3 vectors never span R3 ? t host b sastat
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form of the 3 x 3 matrix that has these vectors as columns, [ v, v, 23] that guarantees they're linearly

independent? That guarantees they span R3 ? That guarantees they're a basis of R3 ?
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1d) What is the dimension of R3? 3

le) How does this discussion generalize to R ?



