
Wed Feb 14
          3.6 determinants 
          midterm Friday!

Announcements: 

Warm-up Exercise:



The effective way to compute determinants for larger-sized matrices without lots of zeroes is to not use the 
definition, but rather to use the following facts, which track how elementary row operations affect 
determinants:
     (1a)  Swapping any two rows changes the sign of the determinant.

             proof:  This is clear for 2 2 matrices, since
a b

c d
= ad bc,          

c d
a b = cb ad .

               For 3 3 determinants, expand across the row not being swapped, and use 
               the 2 2 swap property  to deduce the result.  Prove the general result by induction:  
               once it's true for n n matrices you can prove it for any n 1 n 1  matrix, 
               by expanding across a row that wasn't swapped, and applying the n n result.

         (1b)   Thus, if two rows in a matrix are the same, the determinant of the matrix must be zero:  
                on the one hand, swapping those two rows leaves the matrix and its determinant unchanged;
                on the other hand, by (1a) the determinant changes its sign.  The only way this is possible
                is if the determinant is zero.



       (2a)   If you factor a constant out of a row, then you factor the same constant out of the determinant.
                Precisely, using 

i
 for ith row of A , and writing 
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              proof:  expand across the ith row,  noting that the corresponding cofactors don't 
              change, since they're computed by deleting the ith row to get the corresponding minors:

det A =
j = 1

n

ai jCi j =
j = 1

n

c ai j
* Ci j = c

j = 1

n

ai j
* Ci j = c det A*  .

         

         (2b)  Combining (2a) with (1b), we see that if one row in A is a scalar multiple 
              of another, then det A = 0 .



       (3)  If you replace row i of A, 
i
  by its sum with a multiple of another row, say 

k
  then the 

              determinant is unchanged!  Expand across the ith row:
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= det A 0 .

Remark:  The analogous properties hold for corresponding "elementary column operations".  In fact, the 
proofs are almost identical, except you use column expansions.



Exercise 1)  Recompute 

1 2 1

0 3 1

2 2 1
 from yesterday (using row and column expansions we always got 

an answer of 15 then.)  This time use elementary row operations (and/or elementary column operations).

Exercise 2)  Compute 

1 0 1 2

2 1 1 0

2 0 1 1

1 0 2 1

 .



Theorem:  Let An n .  Then A 1 exists if and only if det A 0 .

proof:  We already know that A 1 exists if and only if the reduced row echelon form of A is the identity 
matrix.  Now, consider reducing A to its reduced row echelon form, and keep track of how the 
determinants of the corresponding matrices change:  As we do elementary row operations,

   if we swap rows, the sign of the determinant switches.

   if we factor non-zero factors out of rows, we factor the same factors out of the determinants.

   if we replace a row by its sum with a multiple of another row, the determinant is unchanged.

Thus, 
         A  = c1 A1 = c1c2 A2 = ... = c1c2 ... cN rref A  

where the nonzero ck 's arise from the three types of elementary row operations.  If rref A = I its 
determinant is 1, and  A = c1c2 ... cN 0 .  If rref A I then its bottom row is all zeroes and its 
determinant is zero, so  A = c1c2 ... cN 0 = 0 .  Thus A 0 if and only if rref A = I if and only if 

A 1 exists !

Remark:  Using the same ideas as above, you can show that det A B = det A det B .  This is an 
important identity that gets used, for example, in multivariable change of variables formulas for integration,
using the Jacobian matrix.  (It is not true that det A B = det A det B  .)  Here's how to show 
det A B = det A det B : The key point is that if you do an elementary row operation to AB , that's the 
same as doing the elementary row operation to A , and then multiplying by B.  With that in mind, if you do 
exactly the same elementary row operations as you did for A  in the theorem above, you get

  A B  = c1 A1B = c1c2 A2B = ... = c1c2 ... cN rref A B .

If rref A = I , then from the theorem above,  A = c1c2 ... cN , and we deduce A B = A B . If 
rref A I , then its bottom row is zeroes, and so is the bottom row of rref A B .  Thus A B = 0 and 
also A B = 0 .



There is a "magic" formula for the inverse of square matrices A (called the "adjoint formula") that uses the 
determinant of A along with the cofactor matrix of A.  We'll talk about the magic formula on Monday next 
week, after the midterm.



Exam notes:

The exam is this Friday February 16, from 10:40-11:40 a.m.  Note that it will start 5 minutes before the 
official start time for this class, and end 5 minutes afterwards, so you should have one hour to work on the
exam.  Get to class early, and bring your University I.D. card, which we might ask you to show if we 
don't recognize you from sections or lecture.  

This exam will cover textbook material from 1.1-1.5, 2.1-2.4, 3.1-3.5.  The exam is closed book and 
closed note.  You may use a scientific (but not a graphing) calculator, although symbolic answers are 
accepted for all problems, so no calculator is really needed.  (Using a graphing calculator which can do 
matrix computations for example, is grounds for receiving grade of 0 on your exam.  So please ask before 
the exam if you're unsure about your calculator.  And of course, your cell phones must be put away.) 

I recommend trying to study by organizing the conceptual and computational framework of the course so 
far.  Only then, test yourself by making sure you can explain the concepts and do typical problems which 
illustrate them. The class notes and text should have explanations for the concepts, along with worked 
examples.  Old homework assignments and quizzes are also a good source of problems.  It could be 
helpful to look at quizzes/exams from my previous Math 2250 classes, which go back several years from 
the link

http://www.math.utah.edu/~korevaar/oldclasses.html.
Your lab meetings tomorrow will be exam review sessions.



Chapter 3:

3a)  Can you recognize an algebraic linear system of equations?

3b) Can you interpret the solution set geometrically when there are 2 or three unknowns?

3c)  Can you use Gaussian elimination to compute reduced row echelon form for matrices?  Can you 
apply this algorithm to augmented matrices to solve linear systems ?  

3d)  What does the shape of the reduced row echelon form of a matrix A tell you about the possible 
solution sets to Ax = b  (perhaps depending, and perhaps not depending on b )?  Focus especially on 
whether each row  of the reduced matrix has a pivot or not;  and on whether each column of the reduced 
matrix has a pivot or not.

3e) What properties do (and do not) hold for the matrix algebra of addition, scalar multiplication, and 
matrix multiplication?



3f)  What is the matrix inverse, A 1 for a square matrix A ?  Does every square matrix have an inverse?  
How can you tell whether or not a matrix has an inverse, using reduced row echelon form?    What's the 
row operations way of finding A 1, when it exists?  Can you use matrix algebra to solve matrix equations 
for unknown vectors x or matrices X ,  possibly using matrix inverses and other algebra manipulations?  



Chapters 1-2:

1a) What is a differential equation?  What is its order?  What is an initial value problem, for a first or 
second order DE?

1b) How do you check whether a function solves a differential equation?  An initial value problem?

1c) What is the connection between a first order differential equation and a slope field for that differential 
equation?  The connection between an IVP and the slope field? 

1d) Do you expect solutions to IVP's to exist, at least for values of the input variable close to its initial 
value?  Why? Do you expect uniqueness?  What can cause solutions to not exist beyond a certain input 
variable value?  

1e)  What is Euler's numerical method for approximating solutions to first order IVP's, and how does it 
relate to slope fields?

1f) What's an autonomous differential equation?  What's an equilibrium solution to an autonomous 
differential equation?  What is a phase diagram for an autonomous first order DE, and how do you 
construct one?  How does a phase diagram help you understand stability questions for equilibria?  What 
does the phase diagram for an autonomous first order DE have to do with the slope field?



1g)  Can you recognize the first order differential equations for which we've studied solution algorithms, 
even if the DE is not automatically given to you pre-set up for that algorithm?  Do you know the 
algorithms for solving these particular first order DE's?

2) Can you convert a description of a dynamical system in terms of rates of change, or a geometric 
configuration in terms of slopes, into a differential equation?  What are the models we've studied carefully
in Chapters 1-2?  What  sorts of DE's and IVP's arise?  Can you solve these basic application DE's, once
you've set up the model as a differential equation and/or IVP?


