
Math 2250-004   Week 13  April 9-13
EP 7.6 - convolutions; 6.1-6.2 - eigenvalues, eigenvectors and diagonalizability; 7.1 - systems of 
differential equations.

Mon Apr 9  
EP 7.6  Convolutions and Laplace transforms.

Announcements: 

Warm-up Exercise:

 



The convolution Laplace transform table entry says it's possible to find the inverse Laplace transform of a 
product of Laplace transforms.  The answer is NOT the product of the inverse Laplace transforms, but a 
more complicated expression known as a "convolution".  If you've had a multivariable Calculus class in 
which you studied interated integrals and changing the order of integration, you can verify that this table 
entry is true - I've included the proof as the last page of today's notes.

  f g t
0

t
f g t  d     F s G s

convolution integrals to invert
Laplace transform products

Overview:   This somewhat amazing table entry allows us to write down solution formulas for any 
constant coefficient nonhomogeneous differential equation, no matter how complicated the right hand side 
is.  Let's focus our discussion on the sort of differential equation that arises in Math 2250, namely the 
second order case

x a x b x = f t  
x 0 = x0 

x 0 = v0 .
Then in Laplace land, this equation is equivalent to

s2 X s sx0 v0 a s X s x0 b X s = F s  

X s s2 a s b = F s x0 s v0 a x0.

X s = F s
1

s2 a s b
 

x0 s v0 a x0

 s2 a s b
 .

The inverse Laplace transform of the second fraction contains the initial value information, and its inverse 
Laplace transform will be a homogeneous solution for the differential equation, and will be zero if 

x0 = v0 = 0.  (Note that the Chapter 5 characteristic polynomial is exactly p r = r2 a r b, which 

coincides with the denominator p s = s2 a s b.)

The first fraction is a product of two Laplace transforms

F s
1

s2 a s b
= F s  W s  

for

W s
1

 s2 a s b
.

and so we can use the convolution table entry to write down an (integral) formula for the inverse Laplace 
transform.  No matter what forcing function f t  appears on the right side of the differential equation, the 
corresponding solution (to the IVP with x0 = v0 = 0) is always given by the integral

x t = f w t = w f t =  
0

t
w f t  d  ,

where
w t = 1 W s t .



Let's look more closely at that solution formula:  The solution to
x a x b x = f t  

x 0 = 0 
x 0 = 0

is given by

x t = f w t = w f t =  
0

t
w f t  d   =  

0

t
f  w t  d  . 

Exercise 1)  The function w t = 1 W s t  is called the "weight function" for the differential 
equation.  Verify that it is a solution to the homogeneous DE IVP

 w  a w  b w = 0
w 0 = 0 
w 0 = 1.

Exercise 2   Interpret the convolution formula 

x t =
0

t
f  w t  d  

in terms of x t  being a result of the forces f  for 0 t, and how responsive the system through 
the weight function, and the corresponding times t  t 0.  This is related to a general principle 
known as "Duhamal's Principal", that applies in a variety of settings.  (See wikipedia.)



Exercise 3.  Let's play the resonance game and practice convolution integrals, first with an old friend, but 
then with non-sinusoidal forcing functions.  We'll stick with our earlier swing, but consider various 
forcing periodic functions f t .

x t x t = f t  
x 0 = 0 
x 0 = 0 

a)  Find the weight function w t .
b)  Write down the solution formula for x t  as a convolution integral.
c)  Work out the special case of X s  when f t = cos t , and verify that the convolution formula 
reproduces the answer we would've gotten from the table entry

t
2 k

sin k t   
s

s2 k2 2   
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Exercise 4  The solution x t  to
x a x b x = f t  

x 0 = 0 
x 0 = 0

is given by

x t = f w t = w f t =  
0

t
w f t  d   =  

0

t
f  w t  d  . 

We worked out that the solution to our DE IVP will be 

x t =
0

t
sin f t  d

Since the unforced system has a natural angular frequency 0 = 1 , we expect resonance when the forcing 

function has the corresponding period of  T0 =
2 
w0

= 2 .   We will discover that there is the possibility 

for resonance if the period of f is a multiple of T0.  (Also, forcing at the natural period doesn't guarantee 
resonance...it depends what function you force with.)

Example 1)  A square wave forcing function with amplitude 1 and period  2 .  Let's talk about how we 
came up with the formula (which works until t = 11  ) .

with plots :

f1 t 1 2
n = 0

10

1 n Heaviside t n Pi :

 plot1a plot f1 t , t = 0 ..30, color = green :
 display plot1a, title = `square wave forcing at natural period` ;

t
10 20 301

1
square wave forcing at natural period

1)  What's your vote?  Is this square wave going to induce resonance, i.e. a response with linearly growing
amplitude?



> > x1 t
0

t
sin f1 t  d :

 plot1b plot x1 t , t = 0 ..30, color = black :
 display plot1a, plot1b , title = `resonance response ?` ;

t
10 20 30

10

0

10

resonance response ?
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Example 2)  A triangle wave forcing function, same period

f2 t
0

t
f1 s  ds 1.5 :   # this antiderivative of square wave should be triangle wave

 plot2a plot f2 t , t = 0 ..30, color = green :
 display plot2a, title = `triangle wave forcing at natural period` ;

10 20 30
1
triangle wave forcing at natural period

2)  Resonance?



> > x2 t
0

t
sin f2 t  d :

 plot2b plot x2 t , t = 0 ..30, color = black :
 display plot2a, plot2b , title = `resonance response ?` ;

t
10 20 30

15
10

5
0
5

10
15

resonance response ?
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Example 3)  Forcing not at the natural period, e.g. with a square wave having period T = 2 .

f3 t 1 2
n = 0

20

1 n Heaviside t n :

 plot3a plot f3 t , t = 0 ..20, color = green :
 display plot3a, title = `periodic forcing, not at the natural period` ;

t
5 10 15 201

1
periodic forcing, not at the natural period

3)  Resonance?



> > x3 t
0

t
sin f3 t  d :

 plot3b plot x3 t , t = 0 ..20, color = black :
 display plot3a, plot3b , title = `resonance response ?` ;

t
5 10 15 20

1
0.5

0
0.5

1
resonance response ?



> > 

Example 4)  Forcing not at the natural period, e.g. with a particular wave having period T = 6  .

f4 t
n = 0

10

Heaviside t 6  n Heaviside t 6 n 1 :

 plot4a plot f4 t , t = 0 ..150, color = green :
 display plot4a, title = sporadic square wave with period 6 ;

t
0 50 100 150

0

1
sporadic square wave with period 6

4)   Resonance?



> > 

> > 

x4 t
0

t
sin f4 t  d :

 plot4b plot x4 t , t = 0 ..150, color = black :
 display plot4a, plot4b , title = `resonance response ?` ;

t
50 100 150

15
10

5
0
5
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15

resonance response ?



Hey, what happened????  How do we need to modify our thinking if we force a system with something 
which is not sinusoidal, in terms of worrying about resonance?  In the case that this was modeling a swing
(pendulum), how is it getting pushed?

Precise Answer:  It turns out that any periodic function with period P is a (possibly infinite) superposition

of a constant function with cosine and sine functions of periods P,
P
2

,
P
3

,
P
4

,... .  Equivalently, these 

functions in the superposition are 

1, cos  t , sin  t , cos 2  t , sin 2  t , cos 3  t , sin 3  t ,...  with  ω =
2
P

.  This is the 

theory of Fourier series, which you will study in other courses, e.g. Math 3150, Partial Differential 
Equations.  If the given periodic forcing function f t  has non-zero terms in this superposition for which 

n = 0 (the natural angular frequency) (equivalently 
P
n

=
2

0

= T0), there will be resonance; 

otherwise, no resonance.  We could already have understood some of this in Chapter 5, for example

Exercise 5)  The natural period of the following DE is (still) T0 = 2  .  Notice that the period of the first 

forcing function below is T = 6  and that the period of the second one is T = T0 = 2 . Yet, it is the first 
DE whose solutions will exhibit resonance, not the second one.  Explain, using Chapter 5 superposition 
ideas:
a)  

x t x t = cos t sin
t
3

.

b)
x t x t = cos 2 t 3 sin 3 t .




