Math 2250-004 Week 13 April 9-13
EP 7.6 - convolutions; ‘6.1-6.2 - eigenvalues, eigenvectors and diagonalizability; /’Zi_ systems of |
differential equations.
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The convolution Laplace transform table entry says it's possible to find the inverse Laplace transform of a
product of Laplace transforms. The answer is NOT the product of the inverse Laplace transforms, but a
more complicated expression known as a "convolution". If you've had a multivariable Calculus class in
which you studied interated integrals and changing the order of integration, you can verify that this table
entry is true - I've included the proof as the last page of today's notes.
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second order case

x"'"+ax"+bx=f(1)

x(0) =%, $ 40| SFLs) -5 £ 10)-f0)
x'(0)=v,. o) ¢ F e F
Then in Laplace land, this equation is equivalent to
S2X(s)—sx0—v0+a(sX(s)—x F(s)

=>X(s)(s2+as+b)=F(s)

1
= X(s)qF(s)- +
The inverse Laplace transform of the second fractiomcontains the 1niti

value information, and its inverse
Laplace transform will be a homogeneous solution for the differentigl equation, and will be zero if

x, =V, = 0. (Note that the Chapter 5 characteristic polynomial is exactly p(r) = P tar+ b, which

coincides with the denominator p(s) = s> +as+ b.)

The first fraction is a product of two Laplace transforms
Fls)5——— 1\
s+as+b

for

W)= ——"—
sS+as+b
and so we can use the convolution table entry to write down an (integral) formula for the inverse Laplace
transform. No matter what forcing function f'(¢) appears on the right side of the differential equation, the
corresponding solution (to the IVP with x, = v, = 0) is always given by the integral
t
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Let's look more closely at that solution formula: The solution to \I\/ (G) = 3 |
x''"+ax'+bx=f(1) Ctas+h

x(0)=0

x"(0)=0

is given by
t t

x(t) =frw(t) =wrf(t) = J w(t)f(t—1) dt = Jf(r) w(t—1) drt.
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Exercise 1) The function w(¢) = L1 {W (s)}(t) is called the "weight function" for the differential
equation. Verify that it is a solution to the homogeneous DE IVP
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Exercise 2 Interpret the convolution formula
t x(Y=D
x(t :J T)w(t—1)dT

in terms of x(¢) being a result of the forces /(1) for 0 < 1T < ¢, and how responsive the system through

the weight function, and the corresponding times # > ¢ — T > 0. This is related to a general principle
known as "Duhamal's Principal", that applies in a variety of settings. (See wikipedia.)
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Exercise 3. Let's play the resonance game and practice convolution integrals, first with an old friend, but
then with non-sinusoidal forcing functions. We'll stick with our earlier swing, but consider various

forcing periodic functions f'().
x (1) + x(1) = £ (1)
I : x(0)=

a) Find the weight function w(¢).
b) Write down the solution formula for x(¢) as a convolution integral.
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c) Work out the special case of X (s) when f(¢#) = cos(¢), and verify that the convolution formula

reproduces the answer we would've gotten from the table entry
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Exercise 4 The solution x(7) to
x""+ax"+bx=f(t)

x(0)=0

x"(0)=0
is given by

t
X(0) = fow(t) = wef (1) = [ w(®) (1 =7) de =
0

We worked out that the solution to our DE IVP will be X"y x = 5 [ 4 bt

t = Lgun Ceny

x(t)=J sin(t) £ (1 — 1) dt X (0= 0 >
| 0 */(0) = O |

Since the unforced system has a natural angular frequency @, = 1 , we expect'tesonance when the forcing

2
function has the corresponding period of 7|, = W_n =2m. We will discover that there is the possibility

0
for resonance if the period of fis a multiple of T,. (Also, forcing at the natural period doesn't guarantee
resonance...it depends what function you force with.)
Example 1) A square wave forcing function with amplitude 1 and period 2 w. Let's talk about how we
came up with the formula (which works until /=111 ).
| > with(plots) : t
oo xm—.j flywit-nydr
> fl:=t—>-1+2- Z (-1)"-Heaviside(t — n-P1) | :
n=0 =]+ 2ul0) Y

plotla = plot(f1(t),t=0.30, color = green) :
display (plotla, title = “square wave forcing at natural period");

~2u(t-7) + 2ult-2m) -
square wave forcing at natural period
1 f
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1) What's your vote? Is this square wave going to induce resonance, i.e. a response with linearly growing
amplitude?
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t
> xl = t—>J sin(t) /(7 — 1) dr:
0
plotlb = plot(xI(t), t=0..30, color = black) :
display ({plotla, plotib}, title = ‘resonance response ?");

resonance response ?
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Example 2) A triangle wave forcirig function, same period

t
> 2= t—>J f1(s) ds —[1.5] # this antiderivative of square wave should be triangle wave
0

plot2a = plot(f2(t), t=0..30, color = green) :
display (plot2a, title = “triangle wave forcing at natural period");

triangle wave forcing at natural period
l
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2) Resonance?



t
> x2 = t—>J sin(t) /2(7 — 1) dr:
0
plot2b := plot(x2(t), t=0..30, color = black) :
display ({ plot2a, plot2b}, title = ‘resonance response ?);

resonance response ?
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Example 3) Forcing not at the natural period, e.g. with a square wave having period 7=2 .

[ 20
> f3i=t—>-1+2- Z (-1)"-Heaviside(t — n) :
n=0

plot3a = plot(f3(t), t=0..20, color = green) :
display (plot3a, title = "periodic forcing, not at the natural period’);

periodic forcing, not at the natural period
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i) Resonance?



t

> x3 = t—>J sin(t)f3(t—1) dt:

0

plot3b := plot(x3(t), t=0..20, color = black) :
display ({ plot3a, plot3b}, title = ‘resonance response ?");

0.5;

-0.51

~

\

resonance response ?
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Example 4) Forcing not at the natural period, e.g. with a particular wave having period T=6 7 .

10

plotda = plot(f4(t), t=0..150, color = green) :
display ( plot4a, title = sporadic square wave with period 61);

sporadic square wave with period 61

> ft =1 D, (Heaviside(t — 6- n'1) — Heaviside(1 — (6:n + 1)) ) :
n=0

; S I E— .50. — .1(.)0

4) Resonance?
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t

> x4 = t—>J sin(1) -4(¢ — 1) dt:
0
plotdb := plot(x4(t), t=0..150, color = black) :
display ({ plot4a, plot4b}, title = ‘resonance response ?");

resonance response ?
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Hey, what happened???? How do we need to modify our thinking if we force a system with something
which is not sinusoidal, in terms of worrying about resonance? In the case that this was modeling a swing
(pendulum), how is it getting pushed?

Precise Answer: It turns out that any periodic function with period P is a (possibly infinite) superposition
P P P

of a constant function with cosine and sine functions of periods {P, 2302

yoer } Equivalently, these

functions in the superposition are

2.
{1, cos(u) t), sin(co t), cos<2 0 t), sin(2wt),cos(3wt),sin(3 ® t),...} with o = Tn This is the
theory of Fourier series, which you will study in other courses, e.g. Math 3150, Partial Differential
Equations. If the given periodic forcing function f'(#) has non-zero terms in this superposition for which

P 2
n-® = o, (the natural angular frequency) (equivalently — = BN T,), there will be resonance;
n ®

0
otherwise, no resonance. We could already have understood some of this in Chapter 5, for example

Exercise 5) The natural period of the following DE is (still) 7, = 2 w . Notice that the period of the first

forcing function below is 7= 6 1 and that the period of the second one is 7'=7|) =2 1. Yet, it is the first

DE whose solutions will exhibit resonance, not the second one. Explain, using Chapter 5 superposition
ideas:

a)
x''(t) +x(t) =cos(t) + sin(%j.

b
x"'(t) +x(t) =cos(2t) — 3sin(3¢).
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