
A larger example of converting higher order DE's and systems of DE's into first-order ones....

Example:
Consider this configuration of two coupled masses and springs:

Exercise 4)  Use Newton's second law to derive a system of two second order differential equations for 
x1 t , x2 t ,  the displacements of the respective masses from the equilibrium configuration.  What initial 
value problem do you expect yields unique solutions in this case?  (See homework in section 7.1)



Exercise 5)  Consider the IVP from Exercise 4, with the special values 
m1 = 2, m2 = 1; k1 = 4, k2 = 2; F t = 40 sin 3 t :   

x1 = 3 x1 x2                        
 x2 = 2 x1 2 x2 40 sin 3 t  
x1 0 = b1, x1 0 = b2            

 x2 0 = c1, x2 0 = c2 .            
5a)  Show that if x1 t , x2 t   solve the IVP above, and if we define

v1 t x1 t  
v2 t x2 t  

then x1 t , x2 t , v1 t , v2 t  solve the first order system IVP
x1 = v1              
x2 = v2               
v1 = 3 x1 x2  

                        v2 = 2 x1 2 x2 40 sin 3 t   
x1 0 = b1          
v1 0 = b2          
x2 0 = c1          
v2 0 = c2  .        

5b)  Conversely, show that if x1 t , x2 t , v1 t , v2 t  solve the IVP of four first order DE's, then 
x1 t , x2 t  solve the original IVP for two second order DE's.



Tues Apr 17  
7.2-7.3   Linear systems of differential equations (7.2);  Solving homogeneous linear systems 
x t = A x t  by finding basis solutions of the form e  tv.  (7.3).

Announcements: 

Warm-up Exercise:



The focus of sections 7.2-7.3 is linear systems of first order differential equations, and their associated 
initial value problems:

x t = A t x t f t  
x t0 = x0 

If the matrix A t  and the vector function f t  are continuous on an open interval I containing t0 then a 
solution x t  exists and is unique, on the entire interval.  We had a similar fact for the scalar version of this
system, in Chapter 1.  There, we had an integrating factor technique to find the solutions.  Not so, here.  
When we want to emphasize the linear nature of this sort of system we may re-write it as

x t A t x t = f t  

x t0 = x0 

We checked on Friday that the operator on the left, namely 

L x t x t A t x t

is linear:

L x t z t = L x t L z t  

L c x t = c L x t  .

This is how the check went (we suppress the t ):

L x t z t =  L x z   x z   A x z     

=  x   z    A x  A z  = x   A x    z   A z    =   L x  L z .

L c x t = L c x  = c x  A c x  = c x   c A x = c x   A x  =  c L x  .



Thus, from vector space theory, 

1a)  The solution space to the homogeneous linear system of DE's 
x t A t x t = 0 .

is a subspace.  

1b)  If x t  is an n vector and A is an n n matrix, then the initial value problems

x t = A t x t    

x t0 = x0  

have n free parameters (i.e. the n entries of the intial vector x0), so it will take a set of n linearly 
independent solutions X1 t , X2 t ,...Xn t  to uniquely solve each IVP with a linear combination

x t = c1 X1 t c2 X2 t   .... cnXn t .  

In other words, the solution space has dimension n. 

By the way, the matrix that has n solutions in its columns is called the Wronskian matrix of the solutions, 
and its determinant is called the Wronskian determinant.

2)  The general solution to the inhomogeneous system
x t A t x t = f t  

which we often write in the form

x t = A t x t f t

is
x t = xp t xH t  

where xp t  is any single particular solution and xH t  is the general solution to the homogeneous 
problem

x t = A t x t .

Just like in Chapter 5!



Section 7.3  How to find a basis for the solution space to homogeneous first order systems of differential 
equations 

x  = A x

when the matrix A is constant and diagonalizable.   

Here's how!!  If  v 0 is an eigenvector of A, i.e. 

A v =  v  

then 

X t  = e  tv

satisifies

X t =  e  t v  
and

A X t  = A e  tv  = e  t A v = e  t  v  .

So X t = e  tv  is a solution to the system of differential equations 
x  = A x.

If A is diagonalizable then there is a basis of n made out of its eigenvectors, and we will have a 
corresponding basis for the solution space to the first order system:

 e 1
 t
v1,   e 2

 t
v2 , ...   e n

 t
vn  .

In other words, we can solve each initial value problem
x  = A x  
x 0 = x0

with a unique linear combination of the basis solutions, 

x t = c1e 1
 t
v1  c2 e 2

 t
v2  cne n

 t
vn .



Exercise 1  For the tank problem last Friday,

We found the eigendata for the matrix A.  But it's been a while, so let's recompute.  Then write down the 
general solution to the first order system and solve the initial value problem.  Compare the solution to the 
pplane analysis we did on Friday, on the next page.





Exercise 2)  For the overdamped mass-spring IVP on Monday

x t 7 x t 6 x t = 0
x 0 = 1 
x 0 = 4 

we found the solution

x t = 2 e t e 6 t.  

We noted that the equivalent first order system IVP for x t , x t T  is
x1 t

x2 t
=

0 1

6 7

x1

x2
 

x1 0

x2 0
=

1

4
 .

2a)  Solve this IVP using the algorithm for first order systems of DE's, and verify that x1 t  is the solution
to the original second order DE IVP.



2b)  Compare the Chapter 5 "Wronskian matrix" for the second order DE, to the Chapter 7 "Wronskian 
matrix" for the system.   (We already noted that the characteristic polynomials were the same.)

x t 7 x t 6 x t = 0

x1 t

x2 t
=

0 1

6 7

x1

x2
.


