
Math 2250-004
Week 14  April 16-20: sections 7.1-7.3 first order systems of linear differential equations; 7.4 mass-spring
systems.

Mon Apr 16  
7.1-7.2  Systems of differential equations (7.1),  and the vector Calculus we need to study them (7.2).  
Every differential equation or system of differential equations can be converted into a first order system of 
differential equations (7.1).

Announcements: 

Warm-up Exercise:

 



Summary and continuation of Friday overview/introduction to Chapter 7, which is about systems of 
differential equations.  We began with a specific two-tank input-output model, with the goal of tracking the
vector 

x1 t

x2 t
 

of solute amounts in each tank.  The initial value problem for this tank system was of the form
x t = A x 
x 0 = x0 



The more general first order system of differential equations, and associated initial value problem is, 
x t = F t, x t  

x t0 = x0 

Existence and Uniqueness for solutions to IVP's:  The above IVP is a vectorized version of the scalar first 
order DE IVP that we considered in Chapter 1.  In Chapter 1 we understood why (with the right 
conditions on the right hand side), these IVP's have unique solutions.  There is an analogous existence-
uniqueness theorem for the vectorized version we study in Chapter 7, and it's believable for the same 
reasons the Chapter 1 theorem seemed reasonable.  We just have to remember the geometric meaning of 
the tangent vector x t  to a parametric curve in n (which is also called the velocity vector in physics, 
when you study particle motion):
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Geometric interpretation in terms of displacement vectors along a parametric curve:

So the existence-uniquess theorem for first order systems of DE's is true because if you know where you 
start at time t0, namely x0; and if you know your tangent vector x t  at every later time -in terms of your 
location x t  and what time t it is, as specified by the vector function F t, x t ;  then there should only be
one way the parametric curve x t  can develop.  This is analogous to our reasoning in Chapter 1 that there 
should only be one way to follow a slope field, given the initial point one starts at.  



For the two-tank example, we used output from pplane, the sister program to dfield, to illustrate how 
solutions follow tangent vector fields, and tracked the solution to 
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=
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We noticed that the limiting solute amounts appeared to be 
x1

x2
=

3

6
, which makes complete 

sense.

Note:  This system of DE's is autonomous, since the formula  x t  only depends on the value of x and 
not on the value of t,  so the tangent field is not changing in time;  the pplane phase portrait is analgous to 
the  phase diagram lines we drew for autonomous first order differential equations in Chapter 2.



On Friday, we began to solve the two-tank IVP example analytically, using eigenvalues and eigenvectors 
from the matrix A in that problem (!). That is typical of what we will do in section 7.3, to solve the first 
order system of DE's

x t = A x 
x 0 = x0 .

But before we finish that computation, it's a better idea to review and extend some differentiation rules you 
probably learned in multivariable Calculus, when you studied the calculus of parametric curves.  This is 
related to material in section 7.2 of the text.  

1)  If   x t = b is a constant vector, then x t = 0 for all t, and vise-verse.   (Because all of the entries in 
the vector b are constants, and their derivatives are zero. And if the derivatives of all entries of a vector are 
identically zero, then the entries are constants.)

2)  Sum rule for differentiation:

   
d
dt

x t y t = x t y t :      Both sides simplify to 

x1 t y1 t

x2 t y2 t

:

xn t yn t

3)  Constant multiple rule for differentiation:

d
dt

c x t = c x t :        Both sides simplify to       c 

x1 t

x2 t

:

xn t

 .



4)  Matrix-valued functions sometimes show up and need to be differentiated.  This is done with the limit 
definition, and amounts to differentiating each entry of the matrix.  For example, if A t  is a 2 2 matrix, 
then
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5)  The constant rule (1), sum rule (2), and constant multiple rule (3) also hold for matrix derivatives.



Universal product rule:  Shortcut to take the derivatives of  
f t x t  (scalar function times vector function), 
f t A t    (scalar function times matrix function),
A t x t  (matrix function times vector function), 

x t y t  (vector function dot product with vector function), 
x t y t  (cross product of two vector functions), 
A t B t   (matrix function times matrix function).  

As long as the "product" operation distributes over addition,  and scalars times the product equal the 
products where the scalar is paired with either one of the terms, there is a product rule.  Since the product 
operation is not assumed to be commutative you need to be careful about the order in which you write 
down the terms in the product rule, though.

Theorem.  Let A t , B t  be differentiable scalar,  matrix or vector-valued functions of t, and let  be a 
product operation as above.  Then

d
dt

A t B t  = A t B t   A t B t .

The explanation just rewrites the limit definition explanation for the scalar function product rule that you 
learned in Calculus, and assumes the product distributes over sums and that scalars can pass through the 
product to either one of the terms, as is true for all the examples above.  It also uses the fact that 
differentiable functions are continuous, that you learned in Calculus.  Here is one explanation that proves 
all of those product rules at once:
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It is always the case that an initial value problem for single differential equation, or for a system of 
differential equations is equivalent to an initial value problem for a larger system of first order differential 
equations, as in the previous example.   (See examples and homework problems in section 7.1)   This 
gives us a new perspective on e.g. homogeneous differential equations from Chapter 5.

For example, consider this overdamped problem from Chapter 5:
x t 7 x t 6 x t = 0

x 0 = 1 
x 0 = 4.

Exercise 3a)  Solve the IVP above, using Chapter 5 and characteristic polynomial.

3b)  Show that if x t  solves the IVP above, then x t , x t T solves the first order system of DE's IVP
x1 t

x2 t
=

0 1
6 7
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x1 0

x2 0
=

1
4

 .

Use your work to write down the solution to the IVP in 3b.  

3c)  Show that if x1 t , x2 t T  solves the IVP in 3b then the first entry x1 t  solves the original second 
order DE IVP.  So converting a second order DE to a first order system is a reversible procedure.



3d)  Compare the characteristic polynomial for the homogeneous DE in 3a, to the one for the matrix in the 
first order system in 3b.  It's a mystery (for now)!

x t 7 x t 6 x t = 0

0 1

6 7

Pictures of the phase portrait for the system in 3b, which is tracking position and velocity of the solution to
3a.  

From pplane, for the system:

From Wolfram alpha, for the underdamped second order DE in 3a.  



A larger example of converting higher order DE's and systems of DE's into first-order ones....

Example:
Consider this configuration of two coupled masses and springs:

Exercise 4)  Use Newton's second law to derive a system of two second order differential equations for 
x1 t , x2 t ,  the displacements of the respective masses from the equilibrium configuration.  What initial 
value problem do you expect yields unique solutions in this case?  (See homework in section 7.1)


