
Fri Apr 13  
7.1  Systems of differential equations - to model multi-component systems via compartmental analysis:

http://en.wikipedia.org/wiki/Multi-compartment_model

Announcements: 

Warm-up Exercise:



Here's a relatively simple 2-tank problem to illustrate the ideas:

Exercise 1)  Find differential equations for solute amounts x1 t , x2 t above, using input-output modeling.
 Assume solute concentration is uniform in each tank.  If x1 0 = b1, x2 0 = b2 , write down the initial 
value problem that you expect would have a unique solution.

answer (in matrix-vector form):
x1 t

x2 t
=

4 2

4 2
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x2 t
  

x1 0

x2 0
=
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b2
                          



Geometric interpretation of first order systems of differential equations. 

The example on page 1 is a special case of the general initial value problem for a first order system of 
differential equations:

x t = F t, x t  
x t0 = x0 

  We will see  how any single differential equation (of any order), or any system of differential equations 
(of any order) is equivalent to a larger first order system of differential equations.  And we will discuss 
how the natural initial value problems correspond.

Why we expect IVP's for first order systems of DE's to have unique solutions  x t  :

  From either a multivariable calculus course, or from physics, recall the geometric/physical interpretation 
of x t  as the tangent/velocity vector to the parametric curve of points with position vector x t , as t 
varies.  This picture should remind you of the discussion, but ask questions if this is new to you:

Analytically, the reason that the vector of derivatives x t  computed component by component is actually 
a limit of scaled secant vectors (and therefore a tangent/velocity vector) is:
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provided each component function is differentiable.  Therefore, the reason you expect a unique solution to
the IVP for a first order system is that you know where you start (x t0 = x0), and you know your 
"velocity" vector (depending on time and current location)  you expect a unique solution!  (Plus, you 
could use something like a vector version of Euler's method or the Runge-Kutta method to approximate it! 
You just convert the scalar quantities in the code into vector quantities.  And this is what numerical solvers
do.)



Exercise 2)  Return to the page 1 tank example
x1 t = 4 x1 2 x2 
x2 t = 4 x1 2 x2   
x1 0 = 9                   
x2 0 = 0                  

2a)  Interpret the parametric solution curve x1 t , x2 t
Tto this IVP, as indicated in the pplane screen 

shot below.  ("pplane" is the sister program to "dfield", that we were using in Chapters 1-2.)  Notice how 
it follows the  "velocity" vector field (which is time-independent in this example), and how the "particle 
motion" location x1 t , x2 t

T is actually the vector of solute amounts in each tank, at time t.  If your 
system involved ten coupled tanks rather than two, then this "particle" is moving around in 10 .
2b)  What are the apparent limiting solute amounts in each tank?
2c)   How could your smart-alec younger sibling have told you the answer to 2b without considering any 
differential equations or "velocity vector fields" at all?

 



First order systems of differential equations of the form
x t = A x 

are called linear homogeneous  systems of DE's.  (Think of rewriting the system as
x t A x = 0 

in analogy with how we wrote linear scalar differential equations.)  Then the inhomogeneous system of 
first order DE's would be written as

x t A x = f t  
or

x t = A x f t  
Notice that the operator on vector-valued functions x t  defined by

L x t x t A x t
is linear, i.e.

L x t y t = L x t L y t
L c x t = c L x t .

SO! The space of solutions to the homogeneous first order system of differential equations
x t A x = 0 

is a subspace.  AND the general solution to the inhomogeneous system
x t A x = f t

will be of the form
x = xP xH 

where xP is any single particular solution and xH is the general homogeneous solution.

Exercise 3)  In the case that A is a constant matrix (i.e. entries don't depend on t) , consider the 
homogeneous problem

x t = A x .
Look for solutions of the form

x t = e  tv ,
where v is a constant vector.   Show that  x t = e  tv  solves the homogeneous DE system if and only if  
v is an eigenvector of A, with eigenvalue , i.e.  A v =  v .

Hint: In order for such an x t  to solve the DE it must be true that
x t =  e  tv  

and
 A x t = A e  tv = e  tA v 

Set these two expressions equal.



Exercise 4)  Use the idea of Exercise 3 to solve the initial value problem of Exercise 2!!  Compare your 
solution x t  to the parametric curve drawn by pplane, that we looked at a couple of pages back.

Exercise 5)  Lessons learned from tank example:  What condition on the matrix An n will allow you to 
uniquely solve every initial value problem

x t = A x 
x 0 = x0

n 
using the method in Exercise 3-4 ?  Hint: Chapter 6.  (If that condition fails there are other ways to find the
unique solutions.)


