Name
 Student I.D.

Math 2250-010
 Super Quiz 2
 March 7, 2014

1a) What two properties must hold for a subset W of a vector space V in order that W be a subspace?

1b) What does it mean for a collection vectors $\underline{\boldsymbol{v}}_{1}, \underline{\boldsymbol{v}}_{2}, \ldots \underline{\boldsymbol{v}}_{n}$ to be a basis for a vector space/subspace W ?
(1 point)

2a) The span of the three vectors

$$
\underline{v}_{1}=\left[\begin{array}{c}
2 \\
-1 \\
3 \\
2
\end{array}\right], \underline{\boldsymbol{v}}_{2}=\left[\begin{array}{c}
0 \\
1 \\
2 \\
-1
\end{array}\right], \underline{v}_{3}=\left[\begin{array}{c}
4 \\
1 \\
12 \\
1
\end{array}\right]
$$

is a subspace of \mathbb{R}^{4}. Find a basis for this subspace using some or all of the three vectors, and explain your reasoning. Hint: the following matrix, which has the three vectors as its columns, along with its reduced row echelon form on the right, can help you answer this question:

$$
\left[\begin{array}{ccc}
2 & 0 & 4 \\
-1 & 1 & 1 \\
3 & 2 & 12 \\
2 & -1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 1 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

2b) What is the dimension of the subspace in part 2 a ?
3) Consider the following differential equation for a function $x(t)$, which could arise from an unforced mass-spring configuration.

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+5 x(t)=0
$$

3a) Find the general solution to this homogeneous linear differential equation.

3b) Which of the three damping phenomena is exhibited by solutions to this differential equation?

```
(1 point)
```

3c) Now consider the inhomogeneous DE

$$
x^{\prime \prime}(t)+2 x^{\prime}(t)+5 x(t)=20
$$

Notice that $x_{P}(t)=4$ is a particular solution. Use this fact and your previous work to write down the general solution to the inhomogeneous DE.

3d) Solve the initial value problem

$$
\begin{gathered}
x^{\prime \prime}(t)+2 x^{\prime}(t)+5 x(t)=20 \\
x(0)=0 \\
x^{\prime}(0)=0 .
\end{gathered}
$$

4) Find the amplitude-phase form $x(t)=C \cos (3 t-\alpha)$, for the function

$$
x(t)=-\cos (3 t)+\sqrt{3} \sin (3 t) .
$$

