Math 2250-010

Quiz 8
April 4, 2014
SOLUTIONS

1) Consider the matrix

$$
A:=\left[\begin{array}{rr}
2 & 1 \\
4 & -1
\end{array}\right]
$$

1a) Find the eigenvalues and eigenvectors (eigenspace bases).
(9 points)

$$
\begin{aligned}
|A-\lambda I| & =\left|\begin{array}{rr}
2-\lambda & 1 \\
4 & -1-\lambda
\end{array}\right|=(\lambda-2)(\lambda+1)-4 \\
& =\lambda^{2}-\lambda-6=(\lambda-3)(\lambda+2)
\end{aligned}
$$

so the eigenvalues are $\lambda=3, \lambda=-2$.
$E_{\lambda=3}:$ We want to solve $(A-3 I) \underline{\boldsymbol{v}}=\underline{\mathbf{0}}$ which has augmented matrix

$$
\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
4 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $v=[1,1]^{T}$ is an eigenvector (eigenspace basis). (This is because $1 \cdot \operatorname{col}_{1}+1 \cdot \operatorname{col}_{2}=\underline{\mathbf{0}}$. You'd end up at the same place if you used the Chapter 3 algorithm of back solving from reduced row echelon form, it would just take you longer:

$$
\left.v_{2}=t, v_{1}=t \Rightarrow \underline{\boldsymbol{v}}=t\left[\begin{array}{l}
1 \\
1
\end{array}\right] .\right)
$$

$E_{\lambda=-2}:$ We want to solve $(A+2 I) \underline{\boldsymbol{v}}=\underline{\mathbf{0}}$ which has augmented matrix

$$
\left[\begin{array}{ll|l}
4 & 1 & 0 \\
4 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Thus $v=[-1,4]^{T}$ is an eigenvector (eigenspace basis). (This is because $-1 \cdot \operatorname{col}_{1}+4 \cdot \operatorname{col}_{2}=\underline{\mathbf{0}}$.)

1b) Give a reason to explain why the two vectors you found in part (a) form a basis for \mathbb{R}^{2}.

The eigenvectors

$$
\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
-1 \\
4
\end{array}\right]
$$

are a basis for \mathbb{R}^{2} because they are linearly independent and span \mathbb{R}^{2}. We know this because the matrix which has these vectors as columns,

$$
\left[\begin{array}{cc}
1 & -1 \\
1 & 4
\end{array}\right.
$$

has non-zero determinant, equivalently reduces to the identity matrix.

