Name

Student I.D.

Math 2250-010
Quiz 6 Take-home
February 28, 2014
Due at the start of class on Monday
1a) Consider the differential equation for $y(x)$

$$
y^{\prime \prime}(x)+6 y^{\prime}(x)+8 y(x)=0 \text {. }
$$

Find the general solution to this homogeneous differential equation. Hint: the solution space has a basis consisting of exponential functions.
the characteristic polynomial (obtained by seeing which functions $y=e^{r x}$ can solve the $D E$) is

$$
p(r)=r^{2}+6 r+8=(r+2)(r+4)
$$

which has roots $r=-2,-4$. Thus a basis for the solution space consists of the two functions $y_{1}(x)=e^{-2 x}, y_{2}(x)=e^{-4 x}$, and the general homogeneous solution is the collection of all linear combinations of the basis functions,

$$
y(x)=c_{1} e^{-2 x}+c_{2} e^{-4 x}
$$

(with $c_{1}, c_{2} \in \mathbb{R}$).
1b) Verify that $y(x)=4 x-3$ is a solution to the inhomogeneous differential equation

$$
y^{\prime \prime}(x)+6 y^{\prime}(x)+8 y(x)=32 x
$$

(1 points)
We verify that this function $y(x)$ makes the differential equation true: For $y(x)=4 x-3, y^{\prime}(x)=4, y^{\prime \prime}(x)=0$ so

$$
y^{\prime \prime}+6 y^{\prime}+8 y=0+6 \cdot 4+8(4 x-3)=24+32 x-24=32 x
$$

which is the correct right hand side, so the DE is true.

1c) Combine your work from $\underline{a} \underline{b}$ to deduce the general solution to the inhomogeneous DE in \underline{b}. Then use this general solution to solve the initial value problem

$$
\begin{gather*}
y^{\prime \prime}(x)+6 y^{\prime}(x)+8 y(x)=32 x \\
y(0)=-2 \\
y^{\prime}(0)=0 . \tag{5points}
\end{gather*}
$$

We know that the general inhomogeneous solution is of the form $y=y_{P}+y_{H}$ i.e.

$$
\begin{aligned}
& y(x)=4 x-3+c_{1} e^{-2 x}+c_{2} e^{-4 x} \\
& \Rightarrow y^{\prime}(x)=4-2 c_{1} e^{-2 x}-4 c_{2} e^{-4 x}
\end{aligned}
$$

We wish to solve

$$
\begin{gathered}
y(0)=-2=-3+c_{1}+c_{2} \\
y^{\prime}(0)=0=4-2 c_{1}-4 c_{2}
\end{gathered}
$$

i.e.

$$
c_{1}+c_{2}=1
$$

$$
c_{1}+2 c_{2}=2
$$

Subtracting equations implies $c_{2}=1$, so $c_{1}=0$.

$$
y(x)=4 x-3+e^{-4 x}
$$

with(DEtools) :
dsolve $\left(\left\{y^{\prime \prime}(x)+6 \cdot y^{\prime}(x)+8 \cdot y(x)=32 \cdot x, y(0)=-2, y^{\prime}(0)=0\right\}\right)$; \# I checked all my work by hand, e.g. the initial values, but this is a tech check

$$
\begin{equation*}
y(x)=-3+4 x+\mathrm{e}^{-4 x} \tag{1}
\end{equation*}
$$

