Math 2250-10 Quiz 3 SOLUTIONS
 January 24, 2014

1) Consider the following differential equation for a function $x(t)$. It is not based on the logistic population model, but does have applications that we will discuss very soon.

$$
x^{\prime}(t)=x^{2}-x-2 .
$$

Find the equilibrium solutions. Then draw the phase diagram and indicate the stability of the equilibrium solutions.
(3 points)
Solution: Equilibrium (constant) solutions will have zero derivative, so the right side of the differential equation must be zero, i.e.

$$
0=x^{2}-x-2=(x-2)(x+1)
$$

Thus the equilibrium solutions are $x \equiv 2, x \equiv-1$. To draw the phase diagram we need to figure out whether $x(t)$ is increasing or decreasing on the intervals between the equilibrium points.
For $x>2, x^{\prime}(t)=(x-2)(x+1)=(+)(+)=(+)$, so $x(t)$ is increasing.
For $-1<x<2, x^{\prime}(t)=(-)(+)=(-)$, so $x(t)$ is decreasing.
For $x<-1, x^{\prime}(t)=(-)(-)=(+)$, so $x(t)$ is increasing. Thus the phase diagram is given by

$$
\rightarrow \rightarrow-1 \leftarrow \leftarrow 2 \rightarrow \rightarrow .
$$

Thus $x \equiv-1$ is asymptotically stable, and $x \equiv 2$ is unstable.
2) Compute the partial fractions decomposition for

$$
\frac{1}{(x-2)(x+1)}
$$

You may use either of the methods we've discussed.
Solution: quick way: The partial fraction decomposition will be a multiple of

$$
\frac{1}{x-2}-\frac{1}{x+1}
$$

since the x-terms will cancel when I recombine:

$$
\frac{1}{x-2}-\frac{1}{x+1}=\frac{(x+1)-(x-2)}{(x-2)(x+1)}=\frac{3}{(x-2)(x+1)} .
$$

Thus (dividing both sides of the equation above by 3 ,

$$
\frac{1}{(x-2)(x+1)}=\frac{1}{3}\left(\frac{1}{x-2}-\frac{1}{x+1}\right)
$$

standard way:

$$
\frac{1}{(x-2)(x+1)}=\frac{A}{x-2}+\frac{B}{x+1}=\frac{A(x+1)+B(x-2)}{(x-2)(x+1)}
$$

Thus (equating numerators of the fractions that have the same denominator)

$$
1=A(x+1)+B(x-2)
$$

Letting $x=-1 \Rightarrow 1=-3 B \Rightarrow B=-\frac{1}{3}$. Letting $x=2 \Rightarrow 1=3 A \Rightarrow A=\frac{1}{3}$. Thus

$$
\frac{1}{(x-2)(x+1)}=\frac{1}{3}\left(\frac{1}{x-2}\right)-\frac{1}{3}\left(\frac{1}{x+1}\right)=\frac{1}{3}\left(\frac{1}{x-2}-\frac{1}{x+1}\right)
$$

3) Use your work from $\underline{2}$ to solve the initial value problem

$$
\begin{gathered}
x^{\prime}(t)=x^{2}-x-2 \\
x(0)=1 .
\end{gathered}
$$

Using the result of 2, and separating:

$$
\begin{aligned}
& \frac{d x}{x^{2}-x-2}=d t \\
& \frac{d x}{(x-2)(x+1)}=d t \\
& \frac{1}{3}\left(\frac{1}{x-2}-\frac{1}{x+1}\right) d x=d t \\
& \left(\frac{1}{x-2}-\frac{1}{x+1}\right) d x=3 d t \\
& \int\left(\frac{1}{x-2}-\frac{1}{x+1}\right) d x=\int 3 d t \\
& \ln \left|\frac{x-2}{x+1}\right|=3 t+C_{1} \\
& \left|\frac{x-2}{x+1}\right|=\mathrm{e}^{3 t+C_{1}}=C \mathrm{e}^{3 t} \\
& \frac{x-2}{x+1}=C \mathrm{e}^{3 t} \\
& x(0)=1 \Rightarrow \frac{-1}{2}=C \Rightarrow \\
& \begin{array}{c}
\frac{x-2}{x+1}=-\frac{1}{2} \mathrm{e}^{3 t} \\
x-2=(x+1)\left(-\frac{1}{2} \mathrm{e}^{3 t}\right)=-\frac{1}{2} x \mathrm{e}^{3 t}-\frac{1}{2} \mathrm{e}^{3 t} \\
x+\frac{1}{2} x \mathrm{e}^{3 t}=2-\frac{1}{2} \mathrm{e}^{3 t} \\
x\left(1+\frac{1}{2} \mathrm{e}^{3 t}\right)=2-\frac{1}{2} \mathrm{e}^{3 t} \\
x(t)=\frac{2-\frac{1}{2} \mathrm{e}^{3 t}}{1+\frac{1}{2} \mathrm{e}^{3 t}}=\frac{4-\mathrm{e}^{3 t}}{2+\mathrm{e}^{3 t}}=\frac{4 \mathrm{e}^{-3 t}-1}{2 e^{-3 t}+1} .
\end{array}
\end{aligned}
$$

(Check: $x(0)=\frac{3}{3}=1$, as desired. Also, $\lim _{t \rightarrow \infty} x(t)=-\frac{1}{1}=-1$, which is consistent with the phase diagram.)

