Math 2250-10 Quiz 2 SOLUTIONS
 January 17, 2014

1a) Find the general solution to the differential equation for $y(x)$

$$
y^{\prime}(x)=-2 y+8
$$

using the method for separable differential equations.

$$
\begin{gathered}
\frac{d y}{d x}=-2 y+8=-2(y-4) \\
\frac{d y}{y-4}=-2 d x
\end{gathered}
$$

(unless $y_{0}=4$, in which case the solution is $y(t) \equiv 4$)

$$
\begin{aligned}
& \int \frac{d y}{y-4}=\int-2 d x \\
& \ln |y-4|=-2 x+C_{1}
\end{aligned}
$$

exponentiate:

$$
|y-4|=\mathrm{e}^{-2 x} \mathrm{e}^{C}
$$

Since $y(t)$ is differentiable it's also continuous, so $|y(t)-4|$ also is - and is never zero. Thus

$$
y-4=C \mathrm{e}^{-2 x}
$$

where $C=\mathrm{e}^{C}$ or $C=-\mathrm{e}^{C_{1}}$. Thus

$$
y(x)=4+C \mathrm{e}^{-2 x} .
$$

(By letting $C=0$ we also pick up the singular solution $y=4$.)

1b) Solve the same differential equation

$$
y^{\prime}(x)=-2 y+8
$$

using the method for linear differential equations.

$$
\begin{gathered}
y^{\prime}(x)+2 y(x)=8 \\
\mathrm{e}^{2 x}\left(y^{\prime}+2 y\right)=8 \mathrm{e}^{2 x} \\
\frac{\mathrm{~d}}{\mathrm{~d} x} \mathrm{e}^{2 x} y(x)=8 \mathrm{e}^{2 x} \\
\mathrm{e}^{2 x} y=\int 8 \mathrm{e}^{2 x} \mathrm{~d} x=4 \mathrm{e}^{2 x}+C .
\end{gathered}
$$

Divide both sides by the integrating factor to solve for $y(x)$:

$$
y=4+C \mathrm{e}^{-2 x}
$$

