Math 2250-10 Quiz 2 SOLUTIONS January 17, 2014

1a) Find the general solution to the differential equation for y(x)y'(x) = -2y + 8using the method for separable differential equations.

(5 points)

$$\frac{dy}{dx} = -2y + 8 = -2(y - 4)$$
$$\frac{dy}{y - 4} = -2 dx$$

(unless $y_0 = 4$, in which case the solution is $y(t) \equiv 4$)

$$\int \frac{dy}{y-4} = \int -2 \, dx$$
$$\ln|y-4| = -2 \, x + C_1$$

exponentiate:

$$|y-4| = e^{-2x}e^{C_1}$$

Since y(t) is differentiable it's also continuous, so |y(t) - 4| also is - and is never zero. Thus $y - 4 = Ce^{-2x}$

where $C = e^{C_1}$ or $C = -e^{C_1}$. Thus

$$y(x) = 4 + Ce^{-2x}$$
.
(By letting $C = 0$ we also pick up the singular solution $y = 4$.)

1b) Solve the same differential equation

y'(x) = -2y + 8

using the method for linear differential equations.

(5 points)

$$y'(x) + 2y(x) = 8$$

$$e^{2x}(y' + 2y) = 8e^{2x}$$

$$\frac{d}{dx}e^{2x}y(x) = 8e^{2x}$$

$$e^{2x}y = \int 8e^{2x} dx = 4e^{2x} + C.$$

Divide both sides by the integrating factor to solve for y(x): $y = 4 + Ce^{-2x}$

e