Math 2250-10 Quiz 1 SOLUTIONS
 January 10, 2014

1a) Consider the differential equation for $y=y(x)$:

$$
y^{\prime}=2 y+6
$$

Show that the functions $y(x)=C e^{2 x}-3$ solve this differential equation.

> (2 points)

We show that the given functions $y(x)$ make the differential equation a true equation. For $y(x)=C e^{2 x}-3$ the left side of the DE is

$$
y^{\prime}(x)=2 C e^{2 x}
$$

The right side of the DE is

$$
2 y+6=2\left(C e^{2 x}-3\right)+6=2 C e^{2 x}-6+6=2 C e^{2 x}
$$

Since the left side and right side of the DE evaluate to the same function, it is a true equation and the given $y(x)$ are solutions.

1b) Find a solution to the initial value problem

$$
\begin{gathered}
y^{\prime}=2 y+6 \\
y(0)=5
\end{gathered}
$$

For a trial solution $y(x)=C e^{2 x}-3$ we set $y(0)=5$ and solve for C :

$$
y(0)=C-3=5 \Rightarrow C=8
$$

So a (the) solution to the IVP is

$$
y(x)=8 e^{2 x}-3
$$

(2 points)
2) The brakes of a car are applied when it is moving $40 \frac{\mathrm{~m}}{\mathrm{~s}}$, and they provide a constant deceleration of $8 \frac{m}{s^{2}}$. How far does the car travel before coming to a stop? Hint: find formulas for the velocity and position functions, and use those to answer the problem.

We learned a formula in class that the distance traveled is

$$
x_{\max }=\frac{v_{0}^{2}}{2 a}=\frac{40^{2}}{16}=\frac{1600}{16}=100 \mathrm{~m}
$$

Alternately (and what we expected most students to do) you can integrate the acceleration to get velocity and position functions, and then work out the answer:

$$
\begin{gathered}
v^{\prime}(t)=-8 \\
\Rightarrow v(t)=\int-8 \mathrm{~d} t=-8 t+C=-8 t+v_{0}=-8 t+40 \\
\Rightarrow x(t)=\int-8 t+40 \mathrm{~d} t=-4 t^{2}+40 t+x_{0}
\end{gathered}
$$

We may set $x_{0}=0$, so

$$
x(t)=-4 t^{2}+40 t
$$

The maximum x will occur when $v(t)=0=-8 t+40$, i.e. at $t=5 \mathrm{sec}$. Then the distance traveled is

$$
x(5)-x(0)=-4 \cdot 5^{2}+40 \cdot 5=-100+200=100 m .
$$

