
ID.nLI1ber.

Math 2250-010
FINAL EXAM

April 29, 2014

This exam is closed-book and closed-note. You may use a scientific calculator, but not one which is
capable of graphing or of solving differential or linear algebra equations. Laplace Transform Tables are
included with this exam. In order to receive full or partial credit on any problem, you must show all
of your work and justify your conclusions. This exam counts for 30% of your course grade. It has
been written so that there are 150 points possible, and the point values for each problem are indicated in the
right-hand margin. Good Luck!

problem score possible

T 1 20

2 10

3 15

4 15

5 10

6

7 25

8 20

9 25

total 150



jJ.. Consider a boat which starts at rest at time 1 0 see, is accelerated in a straigbLpath-byannne that
Inprovides a constant 800 Nof force, and which is also subject to drag force of 20 Nfor each — of

velocity. The boat has rnas(4g, )
1. Use your rnathlphysics modeling ability to show that the boat velocity v(1) (in meters per second)
satisfies the initial value problem

v’ (1) = 2 .05 v
v(0) = 0

+ / . (5 points)
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1k). Solve the initial value problem in k.
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.L1 How far does the boat travel iii the first 20 seconds?
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) A focus in this course is a careful analysis of the mathematics and physical phenomena exhibited in
forced and unforced mechanical (or electrical) oscillation problems. Using the mass-spring model, we’ve
studied the differential equation for functions x(t) solving

mx’’ + cx’ + kxF0 cos(ot)

with in, k, w > 0; c, F0 0.

Explain what each of the letters in, k, c represent in this model. Also give their units in the inks
system. E ck ie.v_ t c..j v fç L

(6 points)
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Explain which values of c, F0, w lead to the phenomena listed below. Show the form that the key parts of
the solutions x(t) have in those cases, in order that the physical phenomena be present. (We’re not
expecting the precise formulas for these parts of the solutions, just what their forms will be.)

b) pure resonance

f LAst (3points)
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simple harmonic motion
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j) practical resonance.
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4 Solve this initial value problem, which could arise from an underdamped mass-spring configuration.
Use Chapter 5 methods.

x’’(t) +4x’(l) + 13x(t)0
x(0) = I

x’ (0) = 4

(10 points)
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) Explain how the solution to the se’tder DE IVP in 4a is related to the solution to the IVP below,
for a first order system for functions x1 (t), x2 (t):

xI ‘=x2

x21-13x1—4x2.

x1 (0) =

x2 (0) = 4“4 (5 points)
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1 Solve this initial value problem:

S

4

4- 5q (c)

::9 -i, CcO —s
c) —.--— - — .‘.

S(t+4) S

4 Ot<2
x’’(i) +4x(t)

0 t2

x(O) = 0
x’ (0) 0.

Hint: The piecewise forcing function may be written using the unit step function, as 4 — 4 11(1 — 2)
- (7 points)
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7) Consider a general input-output model with two compartments as indicated below. The compartments
contain volumes V1, V and solute amounts x1 (1),x7(t) respectively. The flow rates (volume per time) are
indicated by r, i = I ..6 . The two input concentrations (solute amount per volume) are c1, c5.

-

_

Suppose r2 = 13 = 100, r 14 = 15 200, r6 = 300 . Explain why the volumes

V1 (t), V2(t) remain constant.

(4 points)
h—- 4—r-r

2O 4 Oi) —

kjUsing the flow rates above, incoming concentrations c 0.05, c5 = 0 —i—, volumes
in

V2 100 in3 , show that the amounts of solute x1 (t) in tank I and x, (t) in tank 2 satis

x1’(l) -3 1 i 10
= +

x,’(t) 2 —4 0

(5 points)
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8) Consider the following ‘train’ configuration of 3 masses held together with two springs, with positive
displacements from equilibrium for each car measured to the right, as usual. Notice that this train is not
anchored to any wall.

-‘ k

)

Use N ewton’s law and Hooke’s (usual linearization) law to derive the system of 3 second order
differential equations governing the masses’ motion. We assume there are no drag forces.

(6 points)

i .‘ ‘ (—l)

(x—) +

C

) Assume that all three masses are equal, and that the two spring constants are also equal. Assume
further that units have been chosen so that the numerical value of m for each mass equals the numerical
value of k for each Hooke’s constant. Show that in this case the system in 8reduces to

x11’(t)
- 1 0 x1

x7’’(t)
— 1 -2 1 X2

x3’’(t) 0 1 —1 x.

(2 points)
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-1 1 ol
The eigendata for the matrix [

1 -2 1 is

0 1 -ij

=o,v [1,1, if (c, 4 V
T

2I,i[1,0,u1

33,v [1,-2, l]

(6 poiMs)
Use this information to write down the general solution to the system of DEs in

(sk4 [j (çc

I
Describe the three “fundaiental modes’ for this mass-spring problem. en appropriate, include

cillations,
but instead describes ano’ier atural motion that you might expect.)

(6 points)

information about amp litide rios and phase. (One qf the “modes” doesn’t actually have any os
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9) Consider the system of differential equations below, which is a population “competition model” of the
sort we’ve seen in class and homework.

x’(t)9x— x2_3xy

r.ry’(t) 12v—3y2—3xy.

The fou equilbrium solutions This system of differential equations are shown on the phase portrait
below. Verif HäftliëfLflhibiLim points are correct, by finding them algebraically from the system above.
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Classiflj the equilibrium points [0, 4]Tand [2, 2]T, making sure to also indicate their stability
properties. Recall that equilibrium points may be nodal sinks, nodal sources, saddle points, stable centers,
spiral sinks, or spiral sources. For your convenience the system of differential equations is repeated
below.

x’(1)9x- 23x

y (t)12y—3y —3xy.
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2 Use eigenvalues and eigenvectors to find the general solution to the linearizedsystem of differential
equations at the equilibrium point [6, 0]T•
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