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     Our exam covers chapters 4.1-4.4, 5, and 10.1-10.3 of the text.  Only scientific calculators will be 
allowed on the exam.  The last page of the exam will be a xerox of the Laplace transform table from the 
front of the text.  

, remember to get to class a few minutes early.  The exam will be from 8:05 - 9:25 a.m., our usual class 
time. Graphing calculators are not allowed, only scientific ones.  Symbolic answers are allowed, although a
scientific calculator could give you confidence on an amplitude-phase calculation, for example.

,  For a brief outline of the Chapter 4,5,10 topics we've discussed, carefully read the "learning objectives" 
page of our course syllabus.

http://www.math.utah.edu/~korevaar/2250spring14/Math2250Syllabus.pdf
I try to find problems that touch on most of these key topics.  I've put ∗'s next to topics which have higher 
probabilities of appearing on my exams, although anything we've learned is fair game.

Chapter 4.1-4.4
     At most 35% of the exam will deal directly with this material....but much of Chapter 5 uses these 
concepts, so much more than 35% of the exam will be related to chapter 4.  (And, as far as matrix and 
determinant computations go, you should remember everything you learned in Chapter 3.)

) Do you know the key definitions?  

vector space
 a collection of objects together with two operations:  addition and scalar multiplication, so that the 
"usual" rules of vector addition and scalar multiplication hold....in particular, if add two objects in your 
space, the sum is still in it....same for scalar multiplication.
linear combination  of a collection v1, v2, ... vk of k vectors 
any sum of scalar multiples of those vectors, i.e. any

v = c1v1 C c2v2 C ...C ck vk
linearly independent vectors v1, v2, ... vk  

c1v1 C c2v2 C ...C ck vk = 0 0 c1 = c2 =...= ck = 0  
linearly dependent vectors v1, v2, ... vk  
not independent.  (i.e. at least one vector is a combo of the others, or some non-trivial combination of all 

the vectors sums to zero).
span of vectors v1, v2, ... vk  
the subspace W that is the collection of all linear combinations.



subspace of a vector space
a special subset W of the vector space such that if you add any to elements in it, the sum also in it, and if 
you scalar multiply and element, that scalar multiple is also in the set:

f, g 2 W 0 fC g 2 W
f 2 W, c 2 =0 cf 2 W

for example, the only subspaces of =3 are:  the origin, a line thru the origin, a plane thru the origin, and 
all of =3. The closure of W under addition and scalar multiplication implies that all of the other vector 
space arithmetic axioms hold, so W is itself a vector space.

basis of a vector space
a collection of vectors in the vector space W that span W and are linearly independent.

   how do you get a basis if you already have a (possibly dependent) spanning set?
throw out vectors that are dependent on the remaining ones....this won't shrink the span...continue until 
you're left with an independent spanning set.  We had lots of examples of this with vectors in =m  where we
put the vectors into the columns of a matrix; reduced, and saw dependencies that let us throw away 
enough dependent vectors until what remained was a basis for the span W of the original collection.

   how do you get a basis if you have an independent set that doesn't span the vector space?
add vectors to the collection not in their current span, build up this way to a basis. 

dimension of a vector space
   the number of vectors in any basis....for example a plane through the origin in =3 has dimension equal 
to 2.

)  Subspace examples from Chapter 4, involving the concepts above
   the space of solutions x to matrix equations A x = 0  
   the span of vectors v1, v2, ... vk  

)  Subspace examples from Chapter 5
    solution space to homogeneous linear differential equation for e.g. y = y x  on an interval I , i.e. 
solutions to

L y d y n C pn K 1 x  y n K 1 C ... C p1 x y#C p0 x y = 0 
That's the implicit description.  We find the explicit description by finding n linearly independent solutions 
and writing the general homogeneous solutions as  linear combinations of those (i.e. as the span of the 
basis functions).



)  What does it mean for a transformation L : V/W between vector spaces to be linear?
L fC g = L f CL g c f, g 2 V

L cf = cL f c f 2 V, c 2 =

   Chapter 4 examples?
matrix multiplication L x = A x
   Chapter 5 examples?
     the operator L above.
   Chapter 10 example?
 Laplace transform!

)  What is the general solution to L y = f , if L is a linear transformation (or "operator"), in 
terms of particular and homogeneous solutions?  

y = yPC yH
where yP is any single particular solution and yH is the general solution to the homogeneous problem.  
Can you recall/explain why this basic fact is true?

Examples?
    solution space to A x = b 
    solution space to L y = f , i.e. the non-homogeneous linear DE.
    Laplace transform Z f t s = F s .  In this case (it turns out that) the only homogeneous solution 
is the zero function, so each Laplace transform F s  only arises from a single input function f t  (which 
is why we can use the Laplace table in reverse, to find inverse Laplace transforms).



Chapter 5 
     At least 50% of the exam will be related to this material.

)  What is the natural initial value problem for nthKorder linear differential equation, i.e. the one that 
has unique solutions? 

L y d y n C pn K 1 x y n K 1 C ... C p1 x y#C p0 x y = f x  
y x0 = b0
y# x0 = b1

.

.

.
y n K 1 x0 = bn K 1

)  What is the dimension of the solution space to the homogeneous DE
L y d y n C pn K 1 x y n K 1 C ... C p1 x y#C p0 x y = 0  ?

n
Why?

)  How can you tell if y1 x , y2 x ,...yn x  are a basis for the homogeneous solution space above?
they have to solve the DE, and if we just check linear independence, they'll automatically span the solution 
space. In practice, a basis of solutions has the property that you can find unique solutions to each initial 
value problem, using linear combinations of the basis functions. 

How is your answer above related to a Wronskian matrix and the Wronskian determinant?
if the Wronskian matrix is invertible at any single point, the functions will be linearly independent....this 
also means we can use those functions to uniquely solve each IVP at that point.



)  How do you find the general solution to the homogeneous constant coefficient linear DE
L y d an y n C an K 1 y n K 1 C ... C a1 y#C a0 y = 0 ?

    (your answer should involve the characteristic polynomial, Euler's formula, repeated roots, complex 
roots.)  (Do you remember Euler's formula?  Can you use it in the various ways we've seen?  Do you 
remember the Taylor-Maclaurin series formula in general?  For ex, cos x , sin x  in particular?)

try erx  this yields the characteristic polynomial
p r = anrn C an K 1rn K 1 C . . . a1r C a0.

We use the roots of p r ,  and more specifically its factorization

p r = an r K r1

k
1 r K r2

k
2 ... r K rm

k
m

to construct a basis for the solution space.  Make sure you remember all the cases.  Euler's formula and 
algebra related to it plays a big role. Euler's formula is derived using Taylor-McLauren series, and is the
formula

ei q = cos q C i sin q .

)  What is another word for the "principle of superposition"?  Linear
L y1 C y2 = L y1 CL y2

L cy1 = cL y1

)  What form does the general solution to the non-homongeneous linear differential equation 
L y d y n C pn K 1 x y n K 1 C ... C p1 x y#C p0 x y = f x  

take?
y = yPC yH

Can you explain why?

What two (?!) ways do you know to find particular solutions to constant coefficient non-
homogeneous linear DEs

L y d an y n C an K 1y n K 1 C ... C a1 y#C a0 y = f ?
)  undetermined coefficients
)  Laplace transform (e.g. set all the initial conditions equal to zero and solve the IVP).
(There's third way, "undetermined coefficients", which we did not cover and which won't be on the exam.)
 



5.4, 5.6, EP3.7  Mechanical vibrations and forced oscillations; electrical circuit analog

)  What are the governing second order DE's for a damped mass-spring configuration (Newton's 
second law) and for an 

m x## t C c x# t C k x t = F t
)  What are unforced undamped oscillations, 

m x## t C k x t = 0

w0 =
k
m

 

and their solution formulas/behavior?
)    Can you convert a linear combination A cos w t CB sin w t  in amplitude-phase form?  Do you 
remember the addition angle formulas?  Can you explain the physical properties of the solution?

A cos w t CB sin w t = C cos w tKa   
with

C = A2 CB2   

cos a =
A
C

 

sin a =
B
C

 

tan a =
B
A

 .

This is a consequence of the addition angle formula for cos, and is summarized with a diagram in the 
A, B  plane

What are unforced damped oscillations, and their solution formulas/behavior (three types)?
m x## t C c x# t C k x t = 0

)  underdamped (complex root, negative real part), overdamped (two negative roots of characteristic 
poly), critically damped (double negative root).

)  What are the possible phenomena with forced undamped oscillations (assuming the forcing function 
is sinusoidal)?

m x## t C k x t = F0cos w t  or F0sin w t
resonance!!!! or beating !!

)  What are the possible phenomena with forced damped oscillations (assuming the forcing function is 
sinusoidal)?

m x## t C c x# t C k x t = F0cos w t  
In general, there is a "steady periodic" particular solution

xP t = xsp t = C cos w tKa
and the homogeneous solution xH t  always decays exponentially (being either overdamped, 
underdamped, or critically damped), so it is called the transient solution xtr t .



practical resonance (w0 is close to w,  and damping coefficient is small) is a phenomenon of the steady 
periodic solution, namely that it has a "large" amplitude.  There was a more precise definition of practical
resonance:  For the amplitude C = C w  of the steady periodic solution, if C w  has a maximum value 
at some wO 0, then there is practical resonance.

)  Can you solve all initial value problems that arise in the situations above?
hopefully; if the algebra isn't too messy!

Can you use total energy in conservative systems, TE=KE+PE, to derive the second order DE which is
Newton's law, at least for examples we've discussed?

pendulum and undamped mass-spring are the only examples we've covered carefully so far.  We will 
return to these ideas later in the course.



Chapter 10: Laplace transform techniques
     At least 25% of the exam will deal directly with this material.  The most efficient (but not only) way for 
me to test it is to have you solve IVPs from chapter 5 (or earlier), using chapter 5 techniques as well as 
Laplace transform techniques.  You will be responsible for 10.1-10.3 on the exam. (Sections 10.4-10.5 are
yet to come.)  You will be provided with the Laplace transform table on the front book cover and should 
be ready to use any table entry we've discussed.  This includes the resonance entries, which the text does 
not cover until 10.4. 

Can you use the definition of Laplace transform to compute Laplace transforms?

)  Can you convert a constant coefficient linear differential equation IVP into an algebraic expression
for the Laplace transform X s  of the solution x t ?
must be able to do this.

)  Can you use partial fraction techniques and completing the square algebra to break X s  into a 
linear combination of simpler functions for which the Laplace transform table will enable you to compute 
LK1 X s t  ?
must be able to do this.....remember, setting any problem like this up correctly is usually worth the 
majority of points.
 
typical problems:
see chapter quizzes from the past several years, as well as second midterm exam questions ...

http://www.math.utah.edu/~korevaar/2250spring14/2250exams.html
http://www.math.utah.edu/~korevaar/2250fall13/2250exams.html
http://www.math.utah.edu/~korevaar/2250spring13/2250exams.html
http://www.math.utah.edu/~korevaar/2250fall12/2250exams.html
http://www.math.utah.edu/~korevaar/2250spring12/2250exams.html

For deeper review, consult class notes and examples, and homework+lab problems.


