Student I.D.

Math 2250-4 Quiz 9 SOLUTIONS
 March 22, 2013

1a) Find a particular solution to the undamped forced oscillator differential equation for $x(t)$ given by

$$
\begin{equation*}
x^{\prime \prime}(t)+4 x(t)=10 \cos (3 t) . \tag{5points}
\end{equation*}
$$

Undetermined coefficients would ordinarily say we should try $x_{P}(t)=x(t)=A \cos (3 t)+B \sin (3 t)$ but since the left side of the differential equation only has even derivatives we can try

$$
\begin{gathered}
x(t)=A \cos (3 t) \\
x^{\prime}(t)=-3 A \sin (3 t) \\
x^{\prime \prime}(t)=-9 A \cos (3 t)
\end{gathered}
$$

so for this guess,

$$
x^{\prime \prime}(t)+4 x(t)=-9 A \cos (3 t)+4 A \cos (3 t)=-5 A \cos (3 t)
$$

In order for this to equal $10 \cos (3 t)$ we pick $A=-2$ and get

$$
x_{P}(t)=-2 \cos (3 t) .
$$

1b) What is the general solution to the differential equation above?
(2 points)

$$
x=x_{P}+x_{H} .
$$

The homogeneous solution $x_{H}(t)$ solves the undamped unforced harmonic oscillator equation

$$
x^{\prime \prime}(t)+4 x(t)=0
$$

which has $\omega_{0}=2$ and solution

$$
x_{H}(t)=c_{1} \cos (2 t)+c_{2} \sin (2 t) .
$$

Note: you should learn to recognize the equation and solution above. It will save you time vs. going through the characteristic polynomial one more time:

$$
\begin{gathered}
p(r)=r^{2}+4=0 \Rightarrow r^{2}=-4 \Rightarrow r= \pm 2 i \Rightarrow \\
\text { complex solutions } e^{ \pm 2 i t} \Rightarrow \text { real solutions } \cos (2 t), \sin (2 t) .
\end{gathered}
$$

In either case, we deduce the general solution

$$
x=x_{P}+x_{H}=-2 \cos (3 t)+c_{1} \cos (2 t)+c_{2} \sin (2 t) .
$$

2a) What form would the undetermined coefficients particular solution take, for the forced oscillator equation

$$
x^{\prime \prime}(t)+4 x(t)=10 \cos (2 t) ?
$$

(You don't need to find the precise particular solution.)
Since cos (2t) solves the homogeneous DE and corresponds to the characteristic polynomial roots
$r= \pm 2 i$ we multiply the standard undetermined coefficients guess by the variable " t ":

$$
x_{P}(t)=t(A \cos (2 t)+B \sin (2 t))
$$

(It turns out that we didn't need the "cos" term in the x_{p} guess, although we only figured that out later.)
2b) What is the name of the phenomenon that solutions to this differential equation will exhibit?
(1 point)
$\omega=\omega_{0} \Rightarrow$ (pure) resonance.

