Name

Student I.D.

Math 2250-4 Quiz 7 SOLUTIONS
 March 1, 2013

1a) Consider the differential equation for $y(x)$

$$
y^{\prime \prime}(x)-5 y^{\prime}(x)+6 y(x)=0 .
$$

Find the general solution to this homogeneous differential equation. Hint: the solution space has a basis consisting of exponential functions.

If we try $y(x)=e^{r x}$ we compute

$$
\begin{equation*}
L\left(e^{r x}\right)=r^{2} e^{r x}-5 r e^{r x}+6 e^{r x}=e^{r x}\left(r^{2}-5 r+6\right) . \tag{5points}
\end{equation*}
$$

Since we want $L\left(e^{r x}\right)=0$ the exponential growth rates r must be roots of the characteristic polynomial, i. e they must solve

$$
0=r^{2}-5 r+6=(r-3)(r-2) .
$$

Since the roots are $r=2,3, y_{1}(x)=e^{2 x}, y_{2}(x)=e^{3 x}$ solve the DE, and the general homogeneous solution is

$$
y_{H}(x)=c_{1} e^{3 x}+c_{2} e^{2 x} .
$$

1b) Verify that $y(x)=\mathrm{e}^{4 x}$ is a solution to

$$
\begin{equation*}
y^{\prime \prime}(x)-5 y^{\prime}(x)+6 y(x)=2 \mathrm{e}^{4 x} . \tag{1points}
\end{equation*}
$$

For $y(x)=\mathrm{e}^{4 x}$,

$$
y^{\prime \prime}(x)-5 y^{\prime}(x)+6 y(x)=16 \mathrm{e}^{4 x}-20 \mathrm{e}^{4 x}+6 \mathrm{e}^{4 x}=2 \mathrm{e}^{4 x} .
$$

1c) Use your work from $\underline{a}, \underline{b}$ to deduce the general solution to the non-homogeneous $D E$ in \underline{b}, and use this general solution to solve the initial value problem

$$
\begin{gathered}
y^{\prime \prime}(x)-5 y^{\prime}(x)+6 y(x)=2 \mathrm{e}^{4 x} \\
y(0)=0 \\
y^{\prime}(0)=0
\end{gathered}
$$

(4 points)
The general solution is

$$
y(x)=y_{P}(x)+y_{H}(x)=\mathrm{e}^{4 x}+c_{1} e^{3 x}+c_{2} e^{2 x} .
$$

So

$$
y^{\prime}(x)=y_{P}^{\prime}(x)+y_{H}^{\prime}(x)=4 \mathrm{e}^{4 x}+3 c_{1} e^{3 x}+2 c_{2} e^{2 x} .
$$

To solve the IVP we set $x=0$ and solve for the free parameters:

$$
\begin{gathered}
y(0)=0=1+c_{1}+c_{2} \\
y^{\prime}(0)=0=4+3 c_{1}+2 c_{2} . \\
c_{1}+c_{2}=-1 \\
3 c_{1}+2 c_{2}=-4
\end{gathered}
$$

$$
\begin{gathered}
{\left[\begin{array}{ll}
1 & 1 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-4
\end{array}\right]} \\
{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\frac{1}{-1}\left[\begin{array}{cc}
2 & -1 \\
-3 & 1
\end{array}\right]\left[\begin{array}{l}
-1 \\
-4
\end{array}\right]=-\left[\begin{array}{c}
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-2 \\
1
\end{array}\right] .} \\
y(x)=\mathrm{e}^{4 x}-2 e^{3 x}+e^{2 x}
\end{gathered}
$$

