Name

Student I.D.

Math 2250-4
 Quiz 4 SOLUTIONS
 February 1, 2013

1) Consider the following linear drag initial value problem:

$$
\begin{gathered}
\frac{d v}{d t}=-20-2 v \\
v(0)=0
\end{gathered}
$$

1a) Use a phase diagram to determine the limiting velocity $\lim _{t \rightarrow \infty} v(t)$ for the solution to this IVP.
(2 points)
since $-20-2 v=-2(v+10)$ the equilibrium solution is $v=-10$ and the phase diagram is

Thus, no matter the value of $v_{0}, \lim _{t \rightarrow \infty} v(t)=-10$.
1b) Solve the initial value problem above. (Your solution should be consistent with the correct answer to part (a) above.)

May use linear or separable algorithms. For linear:

$$
\begin{gather*}
v^{\prime}(t)+2 v(t)=-20 \tag{6points}\\
\mathrm{e}^{2 t}\left(v^{\prime}(t)+2 v(t)\right)=-20 \mathrm{e}^{2 t} \\
e^{2 t} v(t)=\int-20 \mathrm{e}^{2 t} d t=-10 \mathrm{e}^{2 t}+C \\
\Rightarrow v(t)=-10+C \mathrm{e}^{-2 t} \\
v(0)=0 \Rightarrow C=10 \Rightarrow v(t)=-10 \mathrm{e}^{-2 t}-10 .
\end{gather*}
$$

1c) Use Newton's Law to convert the following information below into a differential equation initial value problem - your IVP should end up being equivalent to the IVP at the top of this page, if you keep track of your units correctly.

A cannister is suspended underwater, at the surface of a deep body of water. At time $t=0$ the cannister is released, to descend into the depths. The cannister weighs 320 pounds on dry land but because of its volume it is also subject to a buoancy force of 120 pounds when underwater. In addition, while descending the cannister is subject to a drag force of 20 pounds for each foot per second of speed. Specifying that "up" is the positive direction, derive the IVP for the cannister's velocity after release. (Hint: recall that a dry-land weight of 32 pounds $=m g$ corresponds to a mass of 1 slug in the English system.)

By Newton's second law,

$$
m v^{\prime}(t)=\text { net forces }=F_{\text {gravity }}+F_{\text {buoancy }}+F_{\text {drag }}=-m g+120-20 v
$$

Since the dry-land weight is 320 pounds, the mass is 10 slugs, so the DE is

$$
10 v^{\prime}(t)=-320+120-20 v=-200-20 v
$$

which simplifies to

$$
v^{\prime}(t)=-20-2 v
$$

Since the cannister starts out at rest the initial condition is $v(0)=0$.

