Name
 Student I.D.

Math 2250-4
 Quiz 3
 January 24, 2013

1) Consider the following differential equation for a function $x(t)$, which could be modeling a logistic population:

$$
x^{\prime}(t)=3 x-x^{2} .
$$

1a) Draw the phase diagram. Identify the equilibrium solutions and whether or not they are stable.

1b) Solve the initial value problem for the differential equation above, with $x(0)=1$:

$$
\begin{gathered}
x^{\prime}(t)=3 x-x^{2} . \\
x(0)=1 .
\end{gathered}
$$

Hint: To save time with partial fractions on this very brief quiz you may use the identity

$$
\frac{1}{x(x-3)}=\frac{1}{3}\left(\frac{1}{x-3}-\frac{1}{x}\right) .
$$

1c) For your solution $x(t)$ to (b), verify that $\lim _{t \rightarrow \infty} x(t)$ does agree with the value implied by your phase diagram in part (a).

