Name

Student I.D.

Math 2250-4
 Quiz 1 Makeup - Solutions
 January 15, 2013

1) Write down an initial value problem for the function $N(t)$, as described below. Do not attempt to find the actual solution function.

In a city with a population of 20 thousand people, the number of people N who have heard a certain rumor \boldsymbol{t} days after the rumor began is increasing at a rate proportional to the product of the number who've heard the rumor and the number who haven't yet heard it. The rumor began when 5 thousand people heard it on the radio.
first bold: $\quad N^{\prime}(t)=$
first italics: k.
second underline, also using first underline: $N(20,000-N)$.
second bold: $N(0)=5000$.
So the initial value problem for $N(t)$ is

$$
\begin{gathered}
N^{\prime}(t)=k N(20,000-N) . \\
N(0)=5000 .
\end{gathered}
$$

If you use people units of thousands of people, then the equivalent (and also correct) IVP is

$$
\begin{gathered}
N^{\prime}(t)=k N(20-N) \\
N(0)=5
\end{gathered}
$$

2) Find the position function $x(t)$ of a particle moving along a straight line, if the acceleration $a(t)=e^{-(0.2) t} \frac{m}{s^{2}}$, and the initial position and velocity are given by $x(0)=0 \mathrm{~m}$ and $v(0)=3 \frac{\mathrm{~m}}{\mathrm{~s}}$.

$$
\begin{gathered}
x^{\prime \prime}(t)=e^{-.02 t} \\
\Rightarrow x^{\prime}(t)=\int e^{-0.2 t} d t=\frac{1}{-.2} e^{-.2 t}+C=-5 e^{-.2 t}+C . \\
x^{\prime}(0)=3=-5+C \Rightarrow C=8 \\
x^{\prime}(t)=-5 e^{-.2 t}+8 \\
\Rightarrow x(t)=\int-5 e^{-.2 t}+8 d t=25 e^{-.2 t}+8 t+C . \\
x(0)=0=25+C \Rightarrow C=-25 . \\
x(t)=25 e^{-.2 t}+8 t-25 .
\end{gathered}
$$

