Name

Student I.D.

Math 2250-4 Quiz 12 SOLUTIONS
 April 19, 2013

1) Find the general solution $\left[x_{1}(t), x_{2}(t)\right]^{T}$ to the homogeneous system of second order differential equations, which could result from a "train" of two cars coupled with a single spring, in the absence of friction (see picture below).

$$
\begin{aligned}
& x_{1}{ }^{\prime \prime}(t)=-2 x_{1}+2 x_{2} \\
& x_{2}{ }^{\prime \prime}(t)=3 x_{1}-3 x_{2} .
\end{aligned}
$$

The acceleration matrix is

$$
A=\left[\begin{array}{cc}
-2 & 2 \\
3 & -3
\end{array}\right]
$$

which has characteristic polynomial

$$
\left|\begin{array}{cc}
-2-\lambda & 2 \\
3 & -3-\lambda
\end{array}\right|=(\lambda+2)(\lambda+3)-6=\lambda^{2}+5 \lambda=\lambda(\lambda+5)
$$

so the eigenvalues are $\lambda=0,-5$.
For $\lambda=0$ the homogeneous eigenvector system is

$$
\left[\begin{array}{cc|c}
-2 & 2 & 0 \\
3 & -3 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
-1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $\underline{\boldsymbol{v}}=[1,1]^{T}$ is an eigenvector, and we get solutions to the SECOND ORDER system of the form

$$
\left(c_{1}+c_{2} t\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

For $\lambda=-5(\omega=\sqrt{5})$ the homogeneous eigenvector system is

$$
\left[\begin{array}{ll|l}
3 & 2 & 0 \\
3 & 2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
3 & 2 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

so $\underline{\boldsymbol{v}}=[2,-3]^{T}$ is an eigenvector.
Thus for this homogeneous linear SECOND ORDER system, the general solution is

$$
\left[\begin{array}{l}
x_{1}(t) \\
x_{2}(t)
\end{array}\right]=\left(c_{1}+c_{2} t\right)\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\left(c_{3} \cos (\sqrt{5} t)+c_{4} \sin (\sqrt{5} t)\right)\left[\begin{array}{c}
2 \\
-3
\end{array}\right] .
$$

2) If the Hooke's constant for the spring connecting the two cars is $k_{1}=6000 \frac{\mathrm{~N}}{\mathrm{~m}}$, then what are the masses m_{1}, m_{2} of the two cars in order that their displacements $x_{1}(t), x_{2}(t)$ from respective equilibrium points be governed by the system of differential equations above?

From Newton's law and the Hooke's linearization,

$$
\begin{gathered}
m_{1} x_{1}{ }^{\prime \prime}(t)=k_{1}\left(x_{2}-x_{1}\right) \\
m_{2} x_{2}{ }^{\prime \prime}(t)=-k_{1}\left(x_{2}-x_{1}\right)
\end{gathered}
$$

i.e.

$$
\begin{aligned}
x_{1}{ }^{\prime \prime}(t) & =\frac{k_{1}}{m_{1}}\left(x_{2}-x_{1}\right) \\
x_{2}{ }^{\prime \prime}(t) & =-\frac{k_{1}}{m_{2}}\left(x_{2}-x_{1}\right) .
\end{aligned}
$$

Since $k_{1}=6000$ and $\frac{k_{1}}{m_{1}}=2 \Rightarrow 6000=2 m_{1} \Rightarrow m_{1}=3000 \mathrm{~kg}$.
Since $k_{1}=6000$ and $\frac{k_{1}}{m_{2}}=3 \Rightarrow 6000=3 m_{2} \Rightarrow m_{2}=2000 \mathrm{~kg}$.

