Name \qquad

Student I.D.

Math 2250-4 Quiz 11 SOLUTIONS

April 12, 2013

1a) Use the methods we've been discussing to find the general solution to the system of differential equations

$$
\begin{gather*}
{\left[\begin{array}{l}
x^{\prime}(t) \\
y^{\prime}(t)
\end{array}\right]=\left[\begin{array}{rr}
0 & 1 \\
-8 & -6
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right] .} \tag{8points}\\
\left|\begin{array}{cr}
0-\lambda & 1 \\
-8 & -6-\lambda
\end{array}\right|=\lambda(\lambda+6)+8=\lambda^{2}+6 \lambda+8=(\lambda+4)(\lambda+2)
\end{gather*}
$$

$\lambda=-4$ the homogeneous system is

$$
\left[\begin{array}{rr|r}
4 & 1 & 0 \\
-8 & -2 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \underline{\boldsymbol{v}}=\left[\begin{array}{c}
1 \\
-4
\end{array}\right]
$$

$\lambda=-2$ the homogeneous system is

$$
\left[\begin{array}{rr|r}
2 & 1 & 0 \\
-8 & -4 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
2 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow \underline{\boldsymbol{v}}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right]
$$

Thus the general solution is

$$
\left[\begin{array}{l}
x(t) \\
y(t)
\end{array}\right]=c_{1} e^{-4 t}\left[\begin{array}{c}
1 \\
-4
\end{array}\right]+c_{2} e^{-2 t}\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

1b) For any solution $[x(t), y(t)]^{T}$ to the first order system of DEs above, what is the second order differential equation satisfied by $x(t)$?

The first order system reads

$$
\begin{gathered}
x^{\prime}(t)=y \\
y^{\prime}(t)=-8 x-6 y .
\end{gathered}
$$

Thus $x^{\prime \prime}=y^{\prime}=-8 x-6 y=-8 x-6 x^{\prime}$. We can also write this $D E$ in the usual form for an unforced undamped mechanical or electrical system

$$
x^{\prime \prime}+6 x^{\prime}+8 x=0 .
$$

(And we continued this discussion in class after the quiz, remarking once again on the correspondence between Chapter 5 and Chapter 7, in the cases where first order systems of DE's arise from converting $n^{\text {th }}$ order linear $D E$'s to systems of n first order linear $D E$'s.)

