\qquad

Student I.D.

Math 2250-4 Quiz 10 SOLUTIONS

April 5, 2013

Directions: Because the homework was split evenly between Laplace transforms and eigenvectors this week, you may choose either problem 1 or problem 2 below to complete. If you attempt both, make it very clear which one you want graded.

1) Consider the matrix

$$
A:=\left[\begin{array}{rr}
1 & 1 \\
4 & -2
\end{array}\right]
$$

Find the eigenvalues and eigenvectors (eigenspace bases).
The characteristic polynomial is
$\begin{aligned} p(\lambda) & =|A-\lambda I|=\left|\begin{array}{rr}1-\lambda & 1 \\ 4 & -2-\lambda\end{array}\right|=(1-\lambda)(-2-\lambda)-4=(\lambda-1)(\lambda+2)-4=\lambda^{2}+\lambda-6 \\ & =(\lambda+3)(\lambda-2)\end{aligned}$
So the eigenvalues are $\lambda=-3,2$. To find the eigenvectors (eigenspace bases) we solve the homogeneous systems

$$
(A-\lambda I) \underline{\boldsymbol{v}}=\underline{\boldsymbol{0}} .
$$

$\lambda=-3:$

$$
\left[\begin{array}{ll|l}
4 & 1 & 0 \\
4 & 1 & 0 \\
\hline
\end{array}\right] .
$$

Short method: Since $1 \cdot \operatorname{col}_{1}-4 \cdot \operatorname{col}_{2}=\underline{\boldsymbol{0}}, v=[1,-4]^{T}$ is an eigenvector (basis for the 1-dimensional eigenspace $E_{\lambda=-3}$).
Long method: Reduce the system, backsolve, extract basis:

$$
\begin{gathered}
{\left[\begin{array}{ll|l}
4 & 1 & 0 \\
4 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
4 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & \frac{1}{4} & 0 \\
0 & 0 & 0
\end{array}\right] \Rightarrow v_{2}=t, v_{1}=-\frac{1}{4} t \Rightarrow} \\
\underline{\boldsymbol{v}}=t\left[\begin{array}{c}
-\frac{1}{4} \\
1
\end{array}\right], t \in \mathbb{R} .
\end{gathered}
$$

So $\left[1,-\frac{1}{4}\right]^{T}$ is an eigenvector (basis for $E_{\lambda=-3}$.) Notice that our solutions the long way and the short way are equivalent, since for a 1-dimensional subspace all possible basis vectors will be non-zero scalar multiples of each other.
$\lambda=2$:

$$
\left[\begin{array}{rr|r}
-1 & 1 & 0 \\
4 & -4 & 0
\end{array}\right] .
$$

since $1 \cdot \operatorname{col}_{1}+1 \cdot \operatorname{col}_{2}=\underline{\boldsymbol{0}} \underline{\boldsymbol{v}}=[1,1]^{T}$ is an eigenvector (basis for the 1-dimensional eigenspace $E_{\lambda=2}$).
2) Solve the initial value problem for the undamped forced mass-spring configuration below . (There is a Laplace transform table on the back of this quiz.)

$$
\begin{gathered}
x^{\prime \prime}(t)+4 x(t)=\left\{\begin{array}{cc}
2 \cdot \cos (2 \cdot t) & 0 \leq t<2 \pi \\
0 & \mathrm{t} \geq 2 \pi
\end{array}\right. \\
x(0)=0 \\
x^{\prime}(0)=0 .
\end{gathered}
$$

Hints: The forcing function can be rewritten as $2 \cos (2 t)(1-u(t-2 \pi))$. Also, the solution has this graph:

(10 points)
Because the function $\cos (2 t)$ has period π and repeats after any integer multiple of π, we may rewrite the forcing function

$$
\begin{gathered}
2 \cos (2 t)(1-u(t-2 \pi))=2 \cos (2 t)-2 \cos (2 t) u(t-2 \pi) \\
=2 \cos (2 t)-2 \cos (2(t-2 \pi)) u(t-2 \pi)
\end{gathered}
$$

In this form we can use the Laplace transform table to take the Laplace transform of both sides of the DE, for the solution to the IVP:

$$
\begin{gathered}
s^{2} X(s)+4 X(s)=\frac{2 s}{s^{2}+4}-2 \mathrm{e}^{-2 \pi s} \frac{s}{s^{2}+4} \\
\Rightarrow X(s)=2 \frac{s}{\left(s^{2}+4\right)^{2}}-2 \mathrm{e}^{-2 \pi s} \frac{s}{\left(s^{2}+4\right)^{2}} \\
\Rightarrow x(t)=\frac{2}{2 \cdot 2} t \sin (2 t)-\frac{2}{2 \cdot 2} u(t-2 \pi)(t-2 \pi) \sin (2(t-2 \pi))
\end{gathered}
$$

That's an acceptable final answer for this quiz. You can simplify it though:

$$
x(t)=\frac{t}{2} \sin (2 t)-\frac{1}{2} u(t-2 \pi)(t-2 \pi) \sin (2 t) .
$$

So, for $0 \leq t \leq 2 \pi, x(t)=\frac{t}{2} \sin (2 t) \quad$ (resonance developing).
And, for $t \geq 2 \pi$,

$$
x(t)=\frac{t}{2} \sin (2 t)-\frac{1}{2}(t-2 \pi) \sin (2 t)=\pi \sin (2 t)
$$

simple harmonic motion with amplitude π.

Table of Laplace Transforms

This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions derived in Chapter 10.

Function	Transform	Finction	Transtorm
	$F(s)$	$e^{a t}$	1
$f(t)$			$\overline{s-a}$
	$a F(s)+b G(s)$	$t^{n} e^{a t}$	$n!$
$a f(t)+b g(t)$			$\overline{(s-a)^{n+1}}$
		$\cos k t$	s
$f^{\prime}(t)$	$s F(s)-f(0)$		$\overline{s^{2}+k^{2}}$
	$s^{2} F(s)-s f(0)-f^{\prime}(0)$	$\sin k t$	k
$f^{\prime \prime}(t)$			$\overline{s^{2}+k^{2}}$
			s
$f^{(n)}(1)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	coshkt	$\overline{s^{2}-k^{2}}$
$\int_{0}^{1} f(\tau) d \tau$	$\frac{F(s)}{s}$	$\sinh k t$	k
			$\overline{s^{2}-k^{2}}$
$e^{a t} f(t)$	$F(s-a)$	$e^{a t} \cos k t$	$s-a$
			$\overline{(s-a)^{2}+k^{2}}$
		$e^{a t} \sin k t$	k
$u(t-a) f(t-a)$	$e^{-a s} F(s)$		$\overline{(s-a)^{2}+k^{2}}$
$\int_{0}^{t} f(\tau) g(t-\tau) d \tau$	$F(s) G(s)$	$\frac{1}{2 k^{3}}(\sin k t-k t \cos k t)$	$\frac{1}{\left(s^{2}+k^{2}\right)^{2}}$
$t f(t)$	$-F^{\prime}(s)$	$\frac{t}{2 k} \sin k t$	$\frac{s}{\left(s^{2}+k^{2}\right)^{2}}$
$t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$	$\frac{1}{2 k}(\sin k t+k t \cos k t)$	$\frac{s^{2}}{\left(s^{2}+k^{2}\right)^{2}}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d \sigma$	$u(t-a)$	$\frac{e^{-a s}}{s}$
$f(t), \quad$ period p	$\frac{1}{1-e^{-p s}} \int_{0}^{P} e^{-s t} f(t) d t$	$\delta(t-a)$	$e^{-a s}$
1	$\frac{1}{5}$	$(-1)^{\llbracket t / a \rrbracket} \quad$ (square wave)	$\frac{1}{s} \tanh \frac{a s}{2}$
t	$\frac{1}{s^{2}}$	$\left[\frac{t}{a}\right]$ (staircase)	$\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$
t^{n}	$\frac{n!}{s^{n+1}}$		
1	1		
	$\frac{1}{\sqrt{s}}$		
	$\Gamma(a+1)$		
t^{a}	s^{a+1}		

