Name \qquad

Student I.D.

Math 2250-4

Quiz 10
April 5, 2013
Directions: Because the homework was split evenly between Laplace transforms and eigenvectors this week, you may choose either problem 1 or problem 2 below to complete. If you attempt both, make it very clear which one you want graded.

1) Consider the matrix

$$
A:=\left[\begin{array}{rr}
1 & 1 \\
4 & -2
\end{array}\right]
$$

Find the eigenvalues and eigenvectors (eigenspace bases).
2) Solve the initial value problem below for the undamped forced mass-spring configuration below . (There is a Laplace transform table on the back of this quiz.)

$$
x^{\prime \prime}(t)+4 x(t)=\left\{\begin{array}{cc}
2 \cdot \cos (2 \cdot t) & 0 \leq t<2 \pi \\
0 & \mathrm{t} \geq 2 \pi
\end{array}\right\}
$$

Hints: The forcing function can be rewritten as $2 \cos (2 t)(1-u(t-2 \pi)$. Also, the solution has this graph:

Table of Laplace Transforms

This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions derived in Chapter 10.

Function	Transform	Finction	Transtorm
	$F(s)$	$e^{a t}$	1
$f(t)$			$\overline{s-a}$
	$a F(s)+b G(s)$	$t^{n} e^{a t}$	$n!$
$a f(t)+b g(t)$			$\overline{(s-a)^{n+1}}$
		$\cos k t$	s
$f^{\prime}(t)$	$s F(s)-f(0)$		$\overline{s^{2}+k^{2}}$
	$s^{2} F(s)-s f(0)-f^{\prime}(0)$	$\sin k t$	k
$f^{\prime \prime}(t)$			$\overline{s^{2}+k^{2}}$
			s
$f^{(n)}(1)$	$s^{n} F(s)-s^{n-1} f(0)-\cdots-f^{(n-1)}(0)$	coshkt	$\overline{s^{2}-k^{2}}$
$\int_{0}^{1} f(\tau) d \tau$	$\frac{F(s)}{s}$	$\sinh k t$	k
			$\overline{s^{2}-k^{2}}$
$e^{a t} f(t)$	$F(s-a)$	$e^{a t} \cos k t$	$s-a$
			$\overline{(s-a)^{2}+k^{2}}$
		$e^{a t} \sin k t$	k
$u(t-a) f(t-a)$	$e^{-a s} F(s)$		$\overline{(s-a)^{2}+k^{2}}$
$\int_{0}^{t} f(\tau) g(t-\tau) d \tau$	$F(s) G(s)$	$\frac{1}{2 k^{3}}(\sin k t-k t \cos k t)$	$\frac{1}{\left(s^{2}+k^{2}\right)^{2}}$
$t f(t)$	$-F^{\prime}(s)$	$\frac{t}{2 k} \sin k t$	$\frac{s}{\left(s^{2}+k^{2}\right)^{2}}$
$t^{n} f(t)$	$(-1)^{n} F^{(n)}(s)$	$\frac{1}{2 k}(\sin k t+k t \cos k t)$	$\frac{s^{2}}{\left(s^{2}+k^{2}\right)^{2}}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d \sigma$	$u(t-a)$	$\frac{e^{-a s}}{s}$
$f(t), \quad$ period p	$\frac{1}{1-e^{-p s}} \int_{0}^{P} e^{-s t} f(t) d t$	$\delta(t-a)$	$e^{-a s}$
1	$\frac{1}{5}$	$(-1)^{\llbracket t / a \rrbracket} \quad$ (square wave)	$\frac{1}{s} \tanh \frac{a s}{2}$
t	$\frac{1}{s^{2}}$	$\left[\frac{t}{a}\right]$ (staircase)	$\frac{e^{-a s}}{s\left(1-e^{-a s}\right)}$
t^{n}	$\frac{n!}{s^{n+1}}$		
1	1		
	$\frac{1}{\sqrt{s}}$		
	$\Gamma(a+1)$		
t^{a}	s^{a+1}		

