Ν	am	e
τ.	am	L

Student I.D.

Math 2250-4 Quiz 10 April 5, 2013

Directions: Because the homework was split evenly between Laplace transforms and eigenvectors this week, <u>you may choose either problem 1 or problem 2 below to complete</u>. If you attempt both, make it very clear which one you want graded.

1) Consider the matrix

$$A := \left[\begin{array}{cc} 1 & 1 \\ 4 & -2 \end{array} \right].$$

Find the eigenvalues and eigenvectors (eigenspace bases).

(10 points)

2) Solve the initial value problem below for the undamped forced mass-spring configuration below . (There is a Laplace transform table on the back of this quiz.)

$$x''(t) + 4x(t) = \begin{cases} 2 \cdot \cos(2 \cdot t) & 0 \le t < 2\pi \\ 0 & t \ge 2\pi \\ x(0) = 0 \\ x'(0) = 0 \end{cases}$$

Hints: The forcing function can be rewritten as $2 \cos(2t) (1 - u(t - 2\pi))$. Also, the solution has this graph:

(10 points)

Table of Laplace Transforms

This table summarizes the general properties of Laplace transforms and the Laplace transforms of particular functions derived in Chapter 10.

Function	Transform	Function	Transform
f(t)	F(s)	e ^{ai}	$\frac{1}{s-a}$
af(t) + bg(t)	aF(s) + bG(s)	$t^n e^{at}$	$\frac{n!}{(s-a)^{n+1}}$
f'(t)	sF(s) - f(0)	cos kt	$\frac{s}{s^2 + k^2}$
f''(t)	$s^2 F(s) - sf(0) - f'(0)$	sin <i>kt</i>	$\frac{k}{s^2 + k^2}$
$f^{(n)}(t)$	$s^{n}F(s) - s^{n-1}f(0) - \cdots - f^{(n-1)}(0)$	cosh kt	$\frac{s}{s^2 - k^2}$
$\int_0^t f(\tau) d\tau$	$\frac{F(s)}{s}$	sinh kt	$\frac{k}{s^2 - k^2}$
$e^{at}f(t)$	F(s-a)	$e^{at}\cos kt$	$\frac{s-a}{(s-a)^2+k^2}$
u(t-a)f(t-a)	$e^{-as}F(s)$	$e^{at}\sin kt$	$\frac{k}{(s-a)^2 + k^2}$
$\int_0^t f(\tau)g(t-\tau)d\tau$	F(s)G(s)	$\frac{1}{2k^3}(\sin kt - kt\cos kt)$	$\frac{1}{(s^2+k^2)^2}$
tf(t)	-F'(s)	$\frac{t}{2k}\sin kt$	$\frac{s}{(s^2+k^2)^2}$
$t^n f(t)$	$(-1)^n F^{(n)}(s)$	$\frac{1}{2k}(\sin kt + kt\cos kt)$	$\frac{s^2}{(s^2+k^2)^2}$
$\frac{f(t)}{t}$	$\int_{s}^{\infty} F(\sigma) d\sigma$	u(t-a)	$\frac{e^{-as}}{s}$
f(t), period p	$\frac{1}{1-e^{-ps}}\int_0^p e^{-st}f(t)dt$	$\delta(t-a)$	e^{-as}
1	<u> </u> <u>s</u>	$(-1)^{[t/a]}$ (square wave)	$\frac{1}{s} \tanh \frac{as}{2}$
t	$\frac{1}{s^2}$	$\left[\frac{t}{a}\right]$ (staircase)	$\frac{e^{-as}}{s(1-e^{-as})}$
t^n	$\frac{n!}{s^{n+1}}$		
$\frac{1}{\sqrt{\pi t}}$	$\frac{1}{\sqrt{s}}$		
t ^a	$\frac{\Gamma(a+1)}{s^{a+1}}$		