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5.4  Applications of  2nd order linear homogeneous DE's with constant coefficients, to unforced spring 
(and related) configurations.  We are focusing on this homogeneous differential equation for functions 
x t , which can arise in a variety of physics situations and that we derived for a mass-spring configuration:

m x##C c x#C k x = 0 .

,   Check the "simple harmonic motion" exercise details that we didn't quite finish on Tuesday, using those
notes.

,   Then discuss the three possibilities that arise when the damping coefficient c O 0, depending on the 
roots of the characteristic polynomial.  This is also outlined in Tuesday's notes, along with examples of 
each case.

,   Then discuss the pendulum model on the next page.  We will do a pendulum and a mass-spring 
experiment, although we may not get to do those until Friday.



Small oscillation pendulum motion and vertical mass-spring motion are governed by exactly the "same" 
differential equation that models the motion of the mass in a horizontal mass-spring configuration.  The 
nicest derivation for the pendulum depends on conservation of mass, as indicated below.  Today or Friday 
we will test both models with actual experiments (in the undamped cases), to see if the predicted periods 

T =
2 p
w0

 correspond to experimental reality.  
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Pendulum: measurements and prediction (we'll check these numbers).
restart :
 Digits d 4 :

L d 1.526;
g d 9.806;

 wd
g
L

; # radians per second

f d evalf w / 2$ Pi ; # cycles per second
 T d 1 / f; # seconds per cycle

Experiment:

Mass-spring:
compute Hooke's constant:

98.7K 83.4;  #displacement from extra 50g

k d
.05$9.806

.153
;  # solve k$x=m$g for k.

m d .1;   # mass for experiment is 100g

 wd
k
m

;  # predicted angular frequency

 f d evalf
w

2$Pi
;  # predicted frequency

 T d
1
f

;  # predicted period

Experiment:

We neglected the KEspring, which is small but could be adding intertia to the system and slowing down the
oscillations.  We can account for this:

Improved mass-spring model  
Normalize  TE = KECPE = 0 for mass hanging in equilibrium position, at rest.  Then for system in 
motion,

KECPE = KEmass CKEspring CPEwork .

PEwork =
0

x

k s ds =
1
2

k x2,     KEmass =
1
2

m x# t 2,     KEspring = ????  
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How to model KEspring ?  Spring is at rest at top (where it's attached to bar), moving with velocity x# t  at

bottom (where it's attached to mass).  Assume it's moving with velocity µ x# t  at location which is 
fraction µ of the way from the top to the mass. Then we can compute KEspring as an integral with respect 

to µ , as the fraction varies 0 % µ% 1 :   

KEspring =
0

1
1
2

µ x# t
2

mspring dµ   

=
1
2

mspring x# t 2

0

1

µ
2
d µ =

1
6

mspring x# t 2  .

Thus

TE =
1
2

m C
1
3

mspring x# t 2 C
1
2

k x2 =
1
2

M x# t 2 C
1
2

k x2 ,

where

M = m C
1
3

mspring

Dt TE = 0 0  
M x# t  x## t C k x t  x# t = 0 .

x# t M x##C k x = 0 .
Since x# t = 0 only at isolated tKvalues, we deduce that the corrected equation of motion is

M x##C k x = 0
with 

w0 =
k
M

=
k

m C
1
3

mspring

  .

Does this lead to a better comparison between model and experiment?

ms d .011;   # spring has mass 11g

 M d m C
1
3
$ms;   #  "effective mass"

 wd
k
M

;  # predicted angular frequency

 f d evalf
w

2$Pi
;  # predicted frequency

 T d
1
f

;  # predicted period


