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5.3  How to find the solution space for nth order linear homogeneous DE's with constant coefficients, and 
why the algorithms work.

On Friday we started discussing the systematic algorithms for finding the general solution yH x  to the 
constant-coefficient homogeneous linear DE of order n,

L y d y n C anK 1y
nK 1 C... C a1 y#C a0 y = 0  .

Solutions y x  to IVPs for these DEs exist and are unique for x-interval I = =, the entire real line.

Finding yH  is a key step in finding the general solution y = yPC yH to non-homogeneous DE's L y = f, 
and also has interesting applications for the homogeneous problem, as we will see in section 5.4. 

We completed case I of the general algorithm below, and had begun the discussion of repeated real roots in
Case II:

Strategy:  In all cases we first try to find a basis for the nKdimensional solution space made of or related to
exponential functions....trying y x = er x yields

L y = er x rnC anK 1r
nK 1 C... C a1rC a0 = er x p r  .

The characteristic polynomial p r  and how it factors are the keys to finding the solution space to 

L y = 0.  For each root rj of p r , we get a solution e
r
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 x
 to the homogeneous DE.  

Case 1)  If p r  has n distinct (i.e. different) real roots r1, r2, ..., rn , then
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are a basis for the solution space;  i.e. the general homogeneous solution is given by
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On Friday we verified that these exponential functions were linearly independent by ordering the roots  
r1 ! r2 !...! rn and using a limiting argument.  Thus they are a basis for the n-dimensional solution 
space, and each homogeneous solution can be written as a unique linear combination of them.



Case 2)  Repeated real roots.  In this case p r  has all real roots r1, r2, ... rm (m! n  with the rj all 
different, but with some of the factors rK rj  in p r  appearing with powers bigger than 1 .  In other 
words, p r  factors as

p r = rnC anK 1r
nK 1 C... C a1rC a0 = rK r1
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with some of the kj O 1 , the number of distinct roots m! n and powers
 k1 C k2 C...C km = n .

The easiest example of this phenomenon is a quadratic p r  with a double root.  We did a special case of 
the exercise below, and I've filled in the details for the general case:

Example)  Consider the case of a second order homogeneous DE with characteristic polynomial 
p r = r2 C a rC b = rK r1

2.  Thus a =K2 r1, b = r1
2, and we can write the DE as

y##K2 r1 y#C r1
2 y = 0 .
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y1 x  solves the DE, but we must check y2 :   
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It is easy to check that y1 x = e
r
1
x
, y2 x = x e

r
1
x
 are linearly independent (e.g. different growth rates 

method or Wronskian), so they are a basis for the solution space.



Here's the general algorithm for Case 2, repeated real roots:  Suppose the characteristic polynomial factors 
with real roots, some of which are repeated roots (and factors):

 p r = rK r1
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with powers satisfying  k1 C k2 C...C km = n  and number of distinct roots m! n.

Then (as in Case 1) e
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 are independent solutions.  Since the number of them m! n there 

aren't enough of them to be a basis.  Here's how you get the rest:  For each power kj O 1 , you actually get
kj independent solutions
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Since  k1 C k2 C...C km = n you get a total of n solutions to the differential equation.  And, this collection 
of all n functions is linearly independent, so is a basis for the solution space.  Magic!

(You will explore why this algorithm always works in your homework.  There's a related discussion on 
pages 316-318 of the text. )

Exercise 1)  Explicitly antidifferentiate to show that the solution space to the differential equation for y x  
y 4 K y 3 = 0 

agrees with what you would get using the repeated roots algorithm in Case 2 above.  Hint: first find 
v = y###, using v#Kv = 0, then antidifferentiate three times to find yH.  When you compare to the repeated 

roots algorithm, note that it includes the possibility r = 0 and that e0 x = 1.



Case 3)  p r  has some complex roots.  The punch line is that exponential functions er x still work, except 
that r = aG b i - But that rather than use those complex exponential functions to construct solution space 
bases we use related real-valued functions that are products of exponential and trigonometry functions.

To understand how this all comes about, we need to learn Euler's formula . This also lets us review some 
important Taylor's series facts from Calc 2.  As it turns out, complex number arithmetic and complex 
exponential functions actually are important in many engineering and science applications.

Recall the Taylor-Maclaurin formula from Calculus

f x w f 0 C f# 0 xC
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f n 0 xnC....  

(Recall that the partial sum polynomial through order n  matches f and its first n derivatives at x0 = 0.  
When you studied Taylor series in Calculus you sometimes expanded about points other than x0 = 0.  You 
also needed error estimates to figure out on which intervals the Taylor polynomials actually coverged back 
to f .)

Exercise 2)  Use the formula above to recall the three very important Taylor series for

2a)  ex =   
2b)  cos x =   
2c)  sin x =    

In Calculus you checked that these series actually converge and equal the given functions, for all real 
numbers x.

Exercise 3)  Let x = i q and use the Taylor series for ex as the definition of ei q in order to derive Euler's 
formula:

ei q = cos q C i sin q  .



From Euler's formula it makes sense to define
eaC b i d eaeb i = ea cos b C i sin b  

for a, b2 =.  So for x2 = we also get
e aC b i x = ea x cos b x C i sin b x = ea xcos b x C i ea xsin b x  .

For a complex function f x C i g x  we define the derivative by
  Dx f x C i g x d f# x C i g# x  .

It's straightforward to verify (but would take some time to check all of them) that the usual differentiation 
rules, i.e. sum rule, product rule, quotient rule, constant multiple rule, all hold for derivatives of complex 
functions.  The following rule pertains most specifically to our discussion and we should check it:

Exercise 4)  Check that Dx e
aC b i x = aC b i e aC b i x , i.e. 

Dx e
r x = r er x  

even if r is complex.  (So also Dx
2 er x = Dxr e

r x = r2 er x, Dx
3 er x = r3 er x , etc.)

Now return to our differential equation questions, with 
L y d y n C anK 1y

nK 1 C... C a1 y#C a0 y .
Then even for complex r = aC b i   (a, b2 = , our work above shows that

L er x = er x rnC anK 1r
nK 1 C... C a1rC a0 = er x p r  .

So if r = aC b i is a complex root of p r  then er x is a complex-valued function solution to L y = 0.  
But L is linear, and because of how we take derivatives of complex functions, we can compute in this case 
that

0C 0 i = L er x = L ea xcos b x C i ea xsin b x  
= L ea xcos b x C i L ea xsin b x  .

Equating the real and imaginary parts in the first expression to those in the final expression (because that's 
what it means for complex numbers to be equal) we deduce

0 = L ea xcos b x  
0 = L ea xsin b x  .

Upshot:  If r = aC b i  is a complex root of the characteristic polynomial p r  then
y1 = ea xcos b x  

y2 = ea xsin b x
are two solutions to L y = 0 .  (The conjugate root aK b i would give rise to y1, Ky2 , which have the 
same span.



Case 3)  Let L  have characteristic polynomial
p r = rnC anK 1r

nK 1 C... C a1rC a0  

with real constant coefficients anK 1,..., a1, a0 .  If rK aC b i k is a factor of p r   then so is the 

conjugate factor rK aK b i k .  Associated to these two factors are 2 k real and independent solutions 
to L y = 0, namely

ea xcos b x , ea xsin b x  
x ea xcos b x , x ea xsin b x  

:                 :   
xkK1e

a x
cos b x , xkK1e

a x
sin b x

Combining cases 1,2,3, yields a complete algorithm for finding the general solution to L y = 0, as long as
you are able to figure out the factorization of the characteristic polynomial p r  .

Exercise 5)  Find a basis for the solution space of functions y x  that solve
y##C 9 y = 0 .

(You were told a basis in the last problem of last week's hw....now you know where it came from.)

Exercise 6)  Find a basis for the solution space of functions y x  that solve
y##C 6 y#C 13 y = 0 .

Exercise 7)  Suppose a 7th order linear homogeneous DE has characteristic polynomial 

p r = r2 C 6 rC 13
2
rK 2 3 .

What is the general solution to the corresponding homogeneous DE? 


