
Math 2250-4                            
Tues Mar 19                                    

Section 5.6:  forced oscillations in mechanical (and electrical) systems.  We will continue to discuss section
5.6 and the electrical circuit analogy EP3.7 on Wednesday.  Today we will focus on undamped forced 
oscillations, and tomorrow we'll focus on the damped case.

Overview for solutions x t  to
m x##C c x#C k x = F0 cos w t  

using section 5.5 undetermined coefficients algorithms.  

,     undamped c = 0  :
     In this case the complementary homogeneous differential equation for x t  is

m x##C k x = 0

x##C
k
m
x = 0 

x##Cw0
2
 x = 0 

     which has simple harmonic motion solutions xH t = C cos w0tKa  .  So for the non-
homongeneous DE:

     ,      ws w0 d
k
m

  0 xP = A cos w t    because only even derivatives!!!

            0 x = xPC xH = A cos w t CC0 cos w0tKa0  .

     ,      ws w0 but wz w0, Cz C0  Beating!

     ,      w = w0                      0 xP = t A cos w0 t CB sin w0 t  

            0 x = xPC xH = C t cos w tKa CC0 cos w0tKa0  .
(Resonance!)

,     damped  cO 0 :     in all cases  xP = A cos w t CB sin w t = C cos w tKa  because ws w0 
.
     ,      underdamped:         x = xPC xH = C cos w tKa C eKp tC1cos w1tKa1  .

     ,      critically-damped:  x = xPC xH = C cos w tKa C eKp t c1tC c2  .

     ,      over-damped:        x = xPC xH = C cos w tKa C c1e
Kr

1
 t
C c2e

Kr
2
t
 .

     ,      in all three cases above, xH t /0 exponentially and is called the transient solution xtr t  .
                                                    xP t  as above is called the steady periodic solution xsp t .  

     ,      if c is small enough and wz w0 then the amplitude C of xsp t  can be large relative to 
F0

m
, and 

the system can exhibit practical resonance.  This can be an important phenomenon in electrical circuits, 
where amplifying signals is important.
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> > 

Exercise 1a)  Solve the initial value problem for x t :
x##C 9 x = 80 cos 5 t  

x 0 = 0 
x# 0 = 0 .

1b)  This superposition of two sinusoidal functions is periodic because there is a common multiple of their 
(shortest) periods.  What is this (common) period?
1c)  Compare your solution and reasoning with the display at the bottom of this page. 

with plots :
plot1d plot K5$cos 5$t , t = 0 ..10, color = green, style = point :
 plot2d plot 5$cos 3$t , t = 0 ..10, color = blue, style = point :
 plot3d plot K5$cos 5$t C 5$cos 3$t , t = 0 ..10, color = black :
 display plot1, plot2, plot3 , title ='superposition ' ;
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In general:

There is an interesting beating phenomenon for wz w0 (but still with ws w0).  This is explained 
analytically via trig identities, and is familiar to musicians in the context of superposed sound waves:

cos aK b K cos aC b = cos a cos b C sin a sin b            
                                     K cos a cos b K sin a sin b   

          = 2 sin a sin b   .

Set a =
1
2

wCw0 t,  b =
1
2

wKw0 t in the identity above, to rewrite the first term in x t  as a 

product rather than a difference:

x t =
F

0

m w2
Kw0

2 2 sin
1
2 wCw0 t sin

1
2 wKw0 t C x

0
cos w0t C

v
0

w0
sin w0t  .

In this product of sinusoidal functions, the first one has angular frequency and period close to the original 
angular frequencies and periods of the original sum.  But the second sinusoidal function has small angular 
frequency and long period, given by

angular frequency: 
1
2

wKw0 ,          period:  
4 p

wKw0

 .
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We will call half the period the beating period, as explained by the next exercise:  

beating period:  
2 p

wKw0

 ,       beating amplitude:  
2 F0

m w
2
Kw0

2   .

Exercise 2a)  Use one of the formulas on the previous page to write down the IVP solution x t to
x##C 9 x = 80 cos 3.1 t  

x 0 = 0 
x# 0 = 0 .

2b)  Compute the beating period and amplitude.  Compare to the graph shown below.

plot 262.3$sin 3.05$t sin .05$t , t = 0 ..100, color = black, title = `beating` ;
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(You can also get this solution by letting w/w0 in the beating formula.)
Exercise 3a)  Solve the IVP 

x##C 9 x = 80 cos 3 t  
x 0 = 0 
x# 0 = 0 .

3b)  Compare the solution graph below with the beating graph in exercise 2.

plot
40
3
t$sin 3$ t , t = 0 ..40, color = black, title = `resonance` ;
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Damped forced oscillations cO 0  for x t :
m x##C c x#C k x = F0 cos w t   

Undetermined coefficients for xP t :

k xP = A cos w t C B sin w t     

C c xP#=KA w sin w t CB w cos w t  

Cm xP##=KA w
2
cos w t KB w

2
sin w t    .

_________________________________________
       L xP = cos w t k AC c B wKm A w

2
 

                      C sin w t k BK c A wKm B w
2

  .

Collecting and equating coefficients yields the matrix system

kKm w2 c w

Kc w kKm w2

A
B =

F0

0
 ,

which has solution

A
B =

1

kKm w2 2
C c2w2

kKm w2
Kc w

c w kKm w2

F0

0
=

F0

kKm w2 2
C c2w2

kKm w2

c w
  

In phase-amplitude form this reads
xP = A cos w t C B sin w t = C cos w tKa  

with

C =
F0

kKm w2 2
C c2w2

  .   (Check!)

cos a =
kKm w

2

kKm w2 2
C c2w2

 

sin a =
c w

kKm w2 2
C c2w2

 .

And the general solution x t = xP t C xH t  is given by

     ,      underdamped:         x = xspC xtr = C cos w tKa C eKp tC1cos w1tKa1  .

     ,      critically-damped:  x = xspC xtr = C cos w tKa C eKp t c1tC c2  .

     ,      over-damped:        x = xspC xtr = C cos w tKa C c1e
Kr
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 t
C c2e
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 .

Important to note:  

     ,      The amplitude C in xsp can be quite large relative to 
F0

m
 if wz w0 and cz 0 , because the 

denominator will then be close to zero.  This phenomenon is related to something called practical 
resonance, which we'll discuss tomorrow, and see with an RLC circuit.
     ,     The phase angle a is always in the first or second quadrant.


