
Math 2250-4                            
Fri Mar 1   
5.2:  tests for linear independence
5.3:  finding the solution space to homogeneous linear constant coefficient differential equations.

The two main goals in Chapter 5 are to learn the structure of solution sets to nth order linear DE's, 
including how to solve the IVPs

y n C anK 1y
nK 1 C... C a1 y#C a0 y = f 
y x0 = b0 
y# x0 = b1 
y## x0 = b2 

:  
y nK 1 x0 = bnK 1 

and to learn important physics/engineering applications of these general techniques.

The algorithm for solving these DEs and IVPs is:

(1) Find a basis y1, y2,...yn for the nKdimensional homogeneous solution space, so that the general 
homogeneous solution is their span, i.e. yH = c1y1 C c2y2 C...C cnyn.
(2) If the DE is non-homogeneous, find a particular solution yP. Then the general solution to the non-
homogeneous DE is y = yPC yH .  (If the DE is homogeneous you can think of taking yP = 0,  since 
y = yH .)
(3) Find values for the n free parameters c1, c2,...cn in

 y = yPC c1y1 C c2y2 C...C cnyn   
to solve the initial value problem with initial values b0, b1,..., bnK 1 .  (This last step just reduces to a 
matrix problem like in Chapter 3, where the matrix is the Wronskian matrix of y1, y2,...yn, evaluated at x0 
and the right hand side vector comes from the initial values and the particular solution and its derivatives' 
values at x0.)

We've already been exploring how these steps play out in examples and homework problems, but will be 
studying them more systematically today and Monday.  On Tuesday we'll begin the applications in section 
5.4.  We should have some fun experiments later next week to compare our mathematical modeling with 
physical reality.



,     In section 5.2 there is a focus on testing whether collections of functions are linearly independent or 
not.  This is important for finding bases for the solution spaces to homogeneous linear DE's because of the
fact that if we find n linearly independent solutions to the nth order homogeneous DE, they will 
automatically span the nKdimensional the solution space.  We discussed this general vector space "magic" 
fact before.

Ways to check whether functions y1, y2,... yn are linearly independent on an interval:

In all cases you begin by writing the linear combination equation
c1y1 C c2y2 C ... C cnyn = 0 

where "0" is the zero function which equals 0 for all x on our interval.

Method 1) Plug in different xK values to get a system of algebraic equations for c1, c2 ..cn .  Either you'll 
get enough "different" equations to conclude that c1 = c2 =...= cn = 0, or you'll find a likely dependency.

Exercise 1)  Use method 1 for I = = , to show that the functions 
y1 x = 1,  y2 x = x,  y3 x = x2 

are linearly independent.  (These functions showed up in the homework you handed in today.)  For 
example, try the system you get by plugging in x = 0,K1, 1  into the equation

c1y1 C c2y2 C c3y3 = 0



Method 2)  If your interval stretches to CN or to KN and your functions grow at different rates, you 
may be able to take limits (after dividing the dependency equation by appropriate functions of x), to deduce
independence.

Exercise 2)  Use method 2 for I = = , to show that the functions 
y1 x = 1,  y2 x = x,  y3 x = x2 

are linearly independent.  Hint:  first divide the dependency equation by the fastest growing function, then 
let x/N .

Method 3)  If 
c1y1 C c2y2 C ... C cnyn = 0

c x2 I, then we can take derivatives to get a system
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(We could keep going, but stopping here gives us n equations in n unknowns.)
Plugging in any value of x0 yields a homogeneous algebraic linear system of n equations in n unknowns, 
which is equivalent to the Wronskian matrix equation
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If this Wronskian matrix is invertible at even a single point x0 2 I , then the functions are linearly 
independent!  (So if the determinant is zero at even a single point x0 2 I , then the functions are 
independent....strangely, even if the determinant was zero for all x2 I , then it could still be true that the 
functions are independent....but that won't happen if our n functions are all solutions to the same nth order 
linear homogeneous DE.)

Exercise 3)  Use method 3 for I = = , to show that the functions 
y1 x = 1,  y2 x = x,  y3 x = x2 

are linearly independent.



Remark 1)  Method 3 is usually not the easiest way to prove independence. But we and the text like it 
when studying differential equations because as we've seen, the Wronskian matrix shows up when you're 
trying to solve initial value problems using

 y = yPC yH =  yPC c1y1 C c2y2 C ... C cnyn 
as the general solution to 

 y n C anK 1y
nK 1 C... C a1 y#C a0 y = f. 

This is because, if the initial conditions for this inhomogeneous DE are
 y x0 = b0, y# x0 = b1, ...y nK 1 x0 = bnK 1  

then you need to solve matrix algebra problem
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for the vector c1, c2,..., cn
Tof linear combination coefficients.  And so if you're using the Wronskian 

matrix method, and the matrix is invertible at x0 then you are effectively directly checking that  y1, y2,... yn 
are a basis for the solution space, and because you've found the Wronskian matrix you are ready to solve 
any initial value problem you want by solving for the linear combination coefficients above.

Remark 2)  There is a seemingly magic consequence in the situation above, in which y1, y2,... yn are all 

solutions to the same nth-order homogeneous DE
 y n C anK 1y

nK 1 C... C a1 y#C a0 y = 0
(even if the coefficients aren't constants): If the Wronskian matrix of your solutions y1, y2,... yn is invertible
at a single point x0, then y1, y2,... yn are a basis because linear combinations uniquely solve all IVP's at x0. 
But since they're a basis, that also means that linear combinations of y1, y2,... yn solve all IVP's at any other
point x1.  This is only possible if the Wronskian matrix at x1 also reduces to the identity matrix at x1 and so
is invertible there too. In other words, the Wronskian determinant will either be non-zero c x2 I , or zero
c x2 I , when your functions y1, y2,... yn all happen to be solutions to the same nth order homogeneous 
linear DE as above.

Exercise 4)  Verify that y1 x = 1,  y2 x = x,  y3 x = x2 all solve the third order linear homogeneous DE
y### = 0 ,

and that their Wronskian determinant is indeed non-zero c x2 =.  



5.3:  Algorithms for the basis and general (homogeneous) solution to

L y d y n C anK 1y
nK 1 C... C a1 y#C a0 y = 0

when the coefficients anK 1, anK 2,  ... a1, a0 are all constant.

step 1)  Try to find a basis made of exponential functions....try y x = er x .  In this case
L y = er x rnC anK 1r

nK 1 C... C a1rC a0 = er x p r  .
We call this polynomial p r  the characteristic polynomial for the differential equation, and can read off 

what it is directly from the expression for L y .  For each root rj of p r , we get a solution e
r
j
 x
 to the 

homogeneous DE.

Case 1)  If p r  has n distinct (i.e. different) real roots r1, r2, ..., rn , then
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is a basis for the solution space;  i.e. the general solution is given by
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r

1
x
C c2e

r
2
x
C ... C cne

r
n
x
 .

Exercise 5)  By construction,  e
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 all solve the differential equation.  Show that they're 

linearly independent.  This will be enough to verify that they're a basis for the solution space, since we 
know the solution space is n-dimensional.  Hint:  The easiest way to show this is to list your  roots so that 
r1 ! r2 !...! rn and to use a limiting argument....in your homework for today and in class we've seen 
specific examples like this, and used the Wronskian matrix and Wronskian (determinant) to check 
independence. 



Case 2)  Repeated real roots.  In this case p r  has all real roots r1, r2, ... rm (m! n  with the rj all 
different, but some of the factors rK rj  in p r  appear with powers bigger than 1 .  In other words, 
p r  factors as

p r = rK r1
k

1 rK r2
k

2 ... rK rm
k
m  

with some of the kj O 1 , and k1 C k2 C...C km = n .

Start with a small example:  The case of a second order DE for which the characteristic polynomial has a 
double root.  You saw an example like this in your homework already.  

Exercise 6)  Let r1 be any real number.  Consider the homogeneous DE

L y d y##K2 r1 y#C r1
2 y = 0 .

with p r = r2K2 r1 rC r
1
2 = rKr1

2 , i.e. r1 is a double root for p r . Show that e
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basis for the solution space to L y = 0 , so the general homogeneous solution is 

yH x = c1e
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 actually (magically?) solves the DE.



Here's the general algorithm:  If
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to be a basis.  Here's how you get the rest:  For each kj O 1 , you actually get independent solutions
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This yields kj solutions for each root rj , so since  k1 C k2 C...C km = n you get a total of n solutions to 
the differential equation.  There's a good explanation in the text as to why these additional functions 
actually do solve the differential equation, see pages 316-318 and the discussion of "polynomial 
differential operators".  I've also made a homework problem in which you can explore these ideas.  Using 
the limiting method we discussed earlier, it's not too hard to show that all n of these solutions are indeed 
linearly independent, so they are in fact a basis for the solution space to L y = 0 .

Exercise 7)  Explicitly antidifferentiate to show that the solution space to the differential equation for y x  
y 4 K y 3 = 0 

agrees with what you would get using the repeated roots algorithm in Case 2 above.  Hint: first find 
v = y###, using v#Kv = 0, then antidifferentiate three times to find yH.  When you compare to the repeated 

roots algorithm, note that it includes the possibility r = 0 and that e0 x = 1.

Case 3)  Complex number roots - this will be our surprising and fun topic on Monday.  Our analysis will 
expain exactly how and why trig functions and mixed exponential-trig-polynomial functions show up as 
solutions for some of the homogeneous DE's you worked with in your homework for today.  This 
analysis depends on Euler's formula, one of the most beautiful and useful formulas in mathematics:

ei q = cos q C i sin q
for i2 =K1.


