
Math 2250-4 
Wed Jan 9
Finish 1.2.  Differential equations of the form y# x = f x .
Then begin 1.3: slope fields and the geometric interpretation of first order IVP's, if we have time.

,   We still have two exercises to finish from Tuesday's notes:  the formula for the maximum position 
function value for an object subject to constant deceleration, and an application to a skidding car problem.  
To conserve paper, we'll use Tuesday's notes.

Here's another fun example from section 1.2, which also reviews important ideas from Calculus - in 

particular we will see how the fact that the slope of a graph y = g x  is the derivative 
dy
dx

 can lead to first 

order differential equations.

Exercise 1:  (See text, page 16).  A swimmer wishes to cross a river of width w = 2 a , by swimming 
directly towards the opposite side, with constant transverse velocity vS . The river velocity is fastest in the 
middle and is given by an even function of x , for Ka% x% a.  The velocity equal to zero at the river 
banks.  For example, it could be that

vR x = v0 1K
x2

a2  .

See the configuration sketches below.
a)  Writing the swimmer location at time t as x t , y t ,  translate the information above into expressions
for x# t   and y# t .
b)  The parametric curve describing the swimmer's location can also be expressed as the graph of a 
function y = y x  .  Show that y x  satisfies the differential equation

dy
dx

=
v0
vS

1K
x2

a2  .

c)  Set up and solve the initial value problem for this DE, to figure out how far downstream the swimmer 
will be when she reaches the far side of the river.



Exercise 2. Reconstructing the position function from a graph of the velocity function:  A car is traveling 
along a marked road which we may consider equivalent to an x-axis.  Set x 0 = x0 = 0.  Recorded below 
is a graph of the car velocity v t  in miles per minute.
a)  Find a formula for x t , for the interval 0 % t% 3 minutes, and graph x = x t .
b)  Use the formula for x t  to determine how far the car traveled in those three minutes.
c)  The distance the car traveled is also computable in terms of an area associated to the velocity graph.  
The reason has to do with the Fundamental Theorem of Calculus.  Explain the connection, and verify that 
this area agrees with your answer from (b).

  

 



section 1.3: slope fields and solution curves.

Consider the first order DE IVP for a function y x :
y#= f x, y   , y x0 = y0 .

If y x  is a solution to this IVP and if we consider its graph y = y x , then the IC means the graph must 
pass through the point x0, y0 .  The DE means that at every point x, y  on the graph the slope of the 
graph must be f x, y .  This gives an alternate way of understanding the graph of the solution y x  even 
without ever actually finding a formula for y x ! 

Consider a slope field near the point x0, y0 : at each nearby point x, y , assign the slope given by 
f x, y .  You can represent this in a picture by using small line segments placed at representative points
x, y , having slopes f x, y  .  An analogous concept is a vector field, which assigns vectors to points. 

You've possibly discussed that notion in the context of electric, magnetic, or gravitional force fields, for 
physics and math applications. In the present case we're using fields of slopes rather than vectors.

Excercise3:  Consider the differential equation 
dy
dx

= xK 3, and then the IVP with y 1 = 2 .

a) Fill in (by hand) segments with representative slopes, to get a picture of the slope field for this DE, in 
the rectangle 0 % x% 5, 0 % y% 6 .  Notice that in this example the value of the slope field only depends
on x, so that all the slopes will be the same on any vertical line (having the same x-coordinate).  (In general,
curves on which the slope field is constant are called isoclines, since "iso" means "the same" and "cline" 
means inclination.)  Since the slopes are all zero on the vertical line for which x = 3, I've drawn a bunch of 
horizontal segments on that line in order to get started, see below.
b) Use the slope field to create a qualitatively accurate sketch for the graph of the solution to the IVP 
above, without resorting to a formula for the solution function y x .
c)  This is a DE and IVP we can solve via antidifferentiation.  Find the formula for y x  and compare its 
graph to your sketch in (b).

       



The procedure of drawing the slope field f x, y  associated to the differential equation y# x = f x, y  can 
be automated.  And, by treating the slope field as essentially constant on small scales, i.e. using

6y
6x

z
dy
dx

= f x, y

one can make discrete steps in x and y, starting from the initial point x0, y0 . In this way one can 
approximate solution functions to IVPs, and their graphs.  You can find an applet to do this by googling 
"dfield"  (stands for "direction field", which is a synonym for slope field).  Here's a picture like the one we
sketched by hand on the previous page.  The solution graph was approximated using numerical ideas as 
above, and this numerical technique works for much more complicated differential equations, e.g. when 
solutions exist but don't have closed form formulas.



Exercise 4:  Consider the IVP
dy
dx

= yK x

y 0 = 0 
a)  Check that y x = xC 1CC ex gives a family of solutions to the DE C=const).  Notice that we 
haven't yet discussed a method to derive these solutions, but we can certainly check whether they work or 
not.
b)  Solve the IVP by choosing appropriate C.
c)  Sketch the solution by hand, for the rectangle K3 % x% 3,K3 % y% 3 .  Also sketch typical solutions
for several different C-values.  Notice that this gives you an idea of what the slope field looks like.  How 
would you attempt to sketch the slope field by hand, if you didn't know the general solutions to the DE?  
What are the isoclines in this case?
d)  Compare your work in (c) with the picture created by dfield on the next page.....If there's time we'll go 
to the dfield URL to see how the picture was created...you'll be doing this in next week's homework 
assignment.




